




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、根据美国人口从1790年到1990年间的人口数据如下表,确定人口指数增长模型和Logistic模型中的待定参数,估计出美国2021年的人口,同时画出拟合效果的图形表1美国人口统计数据年份1790180018101820183018401850人口(X106)3.95.37.29.612.917.123.2年份1860187018801890190019101920人口(X106)31.438.650.262.976.092.0106.5年份193019401950196019701980人口(X106)123.2131.7150.7179.3204.0226.5提示:指数增长模型:x(t) x
2、0eLogistic 模型: x t xm1% 1 ertXo解:模型一:指数增长模型。Malthus模型的根本假设下,人口的增长率为常数,记为r,记时刻t的人口为x(t),即x(t)为模型的状态变量且初始时刻的人dx口为x°,因为d7”由假设可知x(t) xoert经拟合得到:x(0)Xox(t) XoertIn x(t) In x0 rt y at a2y In x(t),a1 r,a21nx0r a1,x0 ea2程序:t=1790:10:1980;x(t)=3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0
3、 106.5 123.2 131.7150.7 179.3 204.0 226.5 ;y=log(x(t);a=polyfit(t,y,1)r=a(1),x0=exp(a(2)x1=x0.*exp(r.*t);plot(t,x(t),'r',t,x1,'b')结果:a = 0.0214 -36.6198r= 0.0214 x0= 1.2480e-016所以得到人口关于时间的函数为:x(t) x0e0.0214t ,其中x0 = 1.2480e-016输入:t=2021;x0 = 1.2480e-016;x(t)=x0*exp(0.0214*t)得到x(t)= 5
4、98.3529即在此用英型下到2021年人口大约为598.3529 106 0350300250200150100500 17801800182018401860188019001920194019601980模型二:阻滞增长模型或Logistic模型由于资源、环境等因素对人口增长 的阻滞作用,人口增长到一定数量后,增长率会下降,假设人口的增长率为x的 减函数,如设r(x) r(1 x/xm),其中r为固有增长率(x很小时),Xm为人dx_x_口容量资源、环境能容纳的最大数量,于是得到如下微分方程:dt rx( 二) x(0) Xo建立函数文件curvefit_fun2.mfunction f
5、=curvefit_fun2 (a,t)f=a(1)./(1+(a(1)/3.9-1)*exp(-a(2)*(t-1790);在命令文件main.m中调用函数文件curve巾t_fun2.m%定义向量数组x=1790:10:1990;y=3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76 .92 106.5 123.2 131.7 150.7 179.3 204 226.5 251.4;plot(x,y,'*',x,y); %画点,并且画一直线把各点连起来hold on;a0=0.001,1; % 初值%最重要的函数,第1
6、个参数是函数名一个同名的 m文件定义,第2个参数是初值,第3、4个参数是数据点a=lsqcurvefit('curvefit fun2',a0,x,y);disp('a=' num2str(a); %显示结果%画图检验结果xi=1790:5:2021;yi=curvefit_fun2(a,xi);plot(xi,yi,'r');%预测2021年的数据x1=2021;y1=curvefit_fun2(a,x1)hold off运行结果:a=311.95310.02798178y1 =267.1947其中a(1> a(2汾别表示x txm中的x
7、m和r, y1那么是对美国美1xm 1 ertx0国2021年的人口的估计第二题:问题重述:一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给与鼓 励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量 的方法。假定鱼池中只有一种鲸鱼,并且得到 8条鱼的如下数据胸围指鱼身的 最大周长:身长(cm)36.831.843.836.832.145.135.932.1重量(g)76548211627374821389652454胸围(cm)24.821.327.924.821.631.822.921.6问题分析:鲸鱼的体重主要与鱼的身长、胸围有关系。一般来说,鲸鱼的胸围越大
8、,鱼 的体重会越重,身长越长,体重也越重。但鱼的胸围与身长之间又有些必然的联 系,共同影响鱼的体重。建模的目的是寻求鲸鱼体重与身长、 胸围之间的数量规 律模型假设:1、鲸鱼的身长越长体重越重,体重与身长存在正相关关系;2、鲸鱼的胸围越大体重也越重,体重与胸围存在正相关的关系;3、鲸鱼的胸围、身长互相影响,共同作用鲸鱼的体重;4、鲸鱼的形态近似为与胸围等周长与身长等高的圆柱体。符号说明:L鲸鱼的身长C鲸鱼的胸围W鲸鱼的体重模型的建立及求解:一、鲸鱼体重与身长模型确实立为了研究鲸鱼身长与体重的关系,我们利用已测量的数据,取出身长及体重的数据,利用MATLAB软件画出散点图,如下:身长与体重散点图从
9、图形上看,鲸鱼的体重与身长可能是二次函数关系,我们利用多项式拟合的方法,得到:2W 1.6247*L2-59.3124*L +709,7392根据拟合的函数,我们画出拟合图:身长与体重拟合图2000180016001400120010008006004002003032343638404244464850从拟合图上看,大局部原始数据在拟合函数附近,说明用二次函数拟合的效果较好,下面利用得出的函数对鱼的体重进展估计, 用相对误差检验拟合度,得到下表:表一、鲸鱼体重实际值与估计值比照及误差表身长cm)31.832.132.135.936.836.843.845.1重量g)4824824546527
10、3776511621389拟合值 g466.6479.9479.9674.4727.3727.31228.81339.4相对误 差%3.20.445.73.444.935.753.570.86从表中的数据,我们可以得出鲸鱼体重的实际值与估计值的相对误差不大, 说明用二次函数拟合鲸鱼身长与体重的关系式可行的。二、鲸鱼体重与胸围的模型确立仅仅考虑鲸鱼胸围对体重的影响,我们采用与模型一一样的方法,先画出鲸鱼体 重与胸围的散点图:利用多项式拟合的方法,我们得从图形上看,鲸鱼体重与胸围可能成线性关系, 到鲸鱼体重与胸围的函数表达式:W 92*0-1497.5(2)根据拟合函数2,画出胸围与体重关系的拟合
11、图:利用拟合函数及实际数据,求出实际值与拟合值得相对误差表:表二、鲸鱼体重实际值与估计值比照及误差表胸围cm21.321.621.622.924.824.827.931.8重量g)48248245465273776511621389拟合值cm462.1489.7489.7609.3784.1784.11069.31428.1相对误 差%4.131.607.866.556.392.507.982.81220020020胸围与体重拟合图20001800160014001200100080060040022242628303234363840从鲸鱼胸围与体重的拟合图,及表二中的数据,我们可以得出用线
12、性函数拟 合胸围与体重的关系拟合程度高,鲸鱼体重的实际值与估计值的相对误差不大, 说明用线性函数拟合鲸鱼身长与体重的关系式可行的。三、建立体重与身长、胸围相互影响的模型实际情况下,鲸鱼的体重不可能只由身长、胸围单方面影响,因此考虑建立 身长、胸围共同作用体重的模型。此模型的建立是基于假设,4,即:鲸鱼的体态用与胸围等周长,与身 长等高的圆柱形来近似。因为圆柱体的体积等于底面积乘高,底面积可以用周长C22表示: J.因此可以分析得出W LC .又物体质量等于密度与体积的乘积,因4此只需根据数据求出密度即可。于是身长、胸围与体重的关系可以表示为:W LC2,问题转化为对系数的求解。根据数据,利用 MATLAB软件求解,得到:0.03273因此,W 0.0327LC24利用得出的函数对鱼的体重进展估测并列如下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 有效复习的试题及答案检索技巧
- 软件设计师考试重点知识回顾及试题及答案
- 计算机软件考试重难点分析试题及答案
- 综合能力的网络管理员试题及答案
- 动态学习VB考试的试题及答案
- 重要概念解析2025年计算机二级VB考试试题及答案
- NLP工具与技术应用试题及答案
- 风险管理在投资决策中的作用试题及答案
- 公司治理中的股东权利保护试题及答案
- 企业人力资源战略与风险应对试题及答案
- 保证断绝关系的保证书
- 企业申报材料审核表
- 《一元二次方程》复习2省公开课获奖课件说课比赛一等奖课件
- 选拔卷-:2024年小升初数学模拟卷三(北师大版)A3版
- 康复医学康复治疗技术含内容模板
- 无人机技术在农业的应用
- 快递云仓合同范本
- NB-T 47037-2021 电站阀门型号编制方法
- 2024春期国开电大专科《液压与气压传动》在线形考(形考任务+实验报告)试题及答案
- 2024年辅警考试公基常识300题(附解析)
- 前额叶皮质在记忆中的作用与机制
评论
0/150
提交评论