



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、最大值和最小值问题2.2最大值、最小值问题教学过程:一、复习引入:极大值:一般地,设函数 f在点x0附近有定义,如果 对x0附近的所有的点,都有 f v f ,就说f是函数f的一个 极大值,记作y极大值=f, x0是极大值点极小值:一般地,设函数 f在x0附近有定义,如果对 x0附近的所有的点,都有f > f.就说f是函数f的一个极小 值,记作y极小值=f , x0是极小值点极大值与极小值统称为极值注意以下几点:极值是一个局部概念由定义,极值只是某个点的函数值 与它附近点的函数值比较是最大或最小并不意味着它在函 数的整个的定义域内最大或最小函数的极值不是唯一的即一个函数在某区间上或定义域
2、内极大值或极小值可以不止一个极大值与极小值之间无确定的大小关系即一个函数的 极大值未必大于极小值,如下图所示,是极大值点,是极小 值点,而>函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部, 也可能在区间的端点二、讲解新课:函数的最大值和最小值观察图中一个定义在闭区间上的函数的图象.图中与是 极小值,是极大值.函数在上的最大值是,最小值是.一般地,在闭区间上连续的函数在上必有最大值与最小 值.说明:在开区间内连续的函数不一定有最大值与最小 值.如函数在内连续,但没有最大值与最小值;函数的最值是比较整个定义域内的函数值得出的;函 数的
3、极值是比较极值点附近函数值得出的.函数在闭区间上连续,是在闭区间上有最大值与最小 值的充分条件而非必要条件.函数在其定义区间上的最大值、最小值最多各有一个, 而函数的极值可能不止一个,也可能没有一个2.利用导数求函数的最值步骤 :由上面函数的图象可以看出,只要把连续函数所有的极 值与定义区间端点的函数值进行比较,就可以得出函数的最 值了.设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:求在内的极值;将的各极值与、比较得出函数在上的最值三、讲解范例:例1求函数在区间上的最大值与最小值例2已知x,y为正实数,且满足,求的取值范围例3.设,函数的最大值为1,最小值为,求常数a,b例4已
4、知,.是否存在实数,使同时满足下列两个条件:) 在上是减函数,在1, +8)上是增函数;的最小值是 1,若 存在,求出,若不存在,说明理由四、课堂练习:.下列说法正确的是A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值c.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值函数y=f在区间a,b 上的最大值是,最小值是,若=, 则f 'A.等于OB.大于Oc.小于0D.以上都有可能函数y=,在1,1上的最小值为A.0B. 2c. 1D.函数y=的最大值为。A.B.1C.D.设y=|x|3,那么y在区间3, 1 上的最小值是A.27B. 3c. 1D.1设f=ax3 - 6ax2+b在区间1, 2上的最大值为 3, 最小值为29,且a>b,则A.a=2,b=29B.a=2,b=3c.a=3,b=2D.a= 2,b= 3五、小结:函数在闭区间上的最值点必在下列各种点之中:导数 等于零的点,导数不存在的点,区间端点;函数在闭区间上连续,是在闭区间上有最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届江西省鹰潭市高三一模语文试题 含解析
- 文物古建-火灾应急预案(3篇)
- 车间电气火灾的应急预案(3篇)
- 二次电缆火灾应急预案(3篇)
- 行政法学理论指导试题及答案
- 商场电器火灾的应急预案(3篇)
- 企业变化管理与风险防范的结合试题及答案
- 2025年前沿技术考试考题及答案
- 发生火灾处理应急预案(3篇)
- 高考作文关于友谊与陪伴的主题及答案
- 计算机辅助制造(CAM)技术实践考核试卷
- 创新创业创造:职场竞争力密钥知到智慧树章节测试课后答案2024年秋上海对外经贸大学
- 《广西高标准农田耕地质量评价工作 指导手册》
- 中国高血压防治指南(2024年修订版)
- 课件中华民族共同体概论课件专家版15第十五讲:新时代与中华民族共同体建设
- 【MOOC】航空航天材料概论-南京航空航天大学 中国大学慕课MOOC答案
- 机械伤害应急处理措施
- DB41T 1165-2015 道路非开挖式地聚合物注浆加固处治技术规范
- 新能源材料与器件基础知识单选题100道及答案解析
- 北师大版数学四年级下册期末考试试卷及答案
- 2024年黑龙江、吉林、辽宁高考地理试卷(含答案逐题解析)
评论
0/150
提交评论