




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、NANJING UN I VEH SI TV OF TECHNOLOGY毕业设计(文献翻译)译文及原文复印件学生姓名:左烨学 号:1804070233所在学院:交通学院专业:交通工程文献题目:Bridges桥梁类型指导教师:罗韧南京工业大学土木工程学院交通工程系二O 一一年三月桥梁类型梁桥梁桥也许是最普遍也是最基本的桥梁结构形式。 一根木头跨越小河是典型梁 桥的一种最简单的实例。在现代的钢梁桥结构形式中,最常见的两种型式是 I 型梁桥和箱梁。如果我们考察 I 型梁的横截面我们马上就能理解为什么它被冠以如此的名 字(见插图 1)。梁的横断面采用了英文字母 I 大写的形状。中间的垂直板被称 为肋板
2、,而顶部和底部的平面板指的就是凸缘。 要解释 I 型梁为什么是一种有效 的截面型式是一项长期而艰巨的任务, 因此在本篇文章中我们就不做解释了。 箱 梁得名如同于 I 型梁一样,很明显, 它的截面形状类似于一个箱子。 典型的箱梁 截面型式有两个肋板和两个凸缘(见插图 2)。但是在某些情况下,两个以上的肋板就会形成存在剪力滞现象的多室箱梁。其他梁桥的例子包括n型梁一一因其截面类似于数学符号n而得名,还有T型梁。因为绝大部分现今建造的梁桥都属于箱梁或是 I 型梁,所以我们会跳过这 些少见的截面类型。现在我们了解了 I 型梁和箱梁之间的外形差异, 让我们来看看这两种截面型 式的优缺点。 I 型梁截面设
3、计和建造简单,在大部分情况下,使用效果也很好。 但是,如果梁桥有任何形式的弯曲,梁就会受扭,也就是众所周知的扭矩。对比 于I型梁,在箱梁中添加的第二个肋板增加了稳定性, 也就增加了箱梁的抗扭性 能。这就使得箱梁截面成为存在显著曲线梁桥的理想选择。箱梁结构更稳定可以跨越更长的距离且经常用于大跨径桥梁, 而使用 I 型梁 就不会有足够的强度和稳定性。然而,设计构造箱梁桥相比于 I 型梁更为困难。 例如,为了焊接箱型梁内的接缝, 人工或是机械就必须能够控制箱梁产生的剪力 滞。桁架桥桁架是一种简单的类似于骨骼的结构。 在结构力学中, 简单桁架的单个组成 部分只受到拉力和压缩力,而不存在弯曲力。因此,
4、在大多数情况下 , 所有梁桁架桥是直的。桁架梁是由很多小桁架组成, 支撑大量的重量,跨越较大的距离。在大多数情况下 , 设计、制造和安装桁架是 相对简单的。然而,一旦组装的桁架占用较大的空间,以复杂的结构形成,就会 分散司机的注意力。像梁桥一样, 既有简单的桁架桥, 又有连续桁架桥。 桁架桥的各个部件体积 小,使其成为在大型部件或部分部件不能装运或者大型起重机械和重型设备不能 使用的地方处理想的桥梁型式。 由于桁架是一个空洞的骨架结构, 道路可能越过 (见插图 2)甚至通过(见插图 1),同时考虑到桥下的清场,这是其他桥型不能 比的。桁架也按基本设计使用来分类。 最具代表性的包括华伦桁架, 普
5、拉特桁架以 及豪威桁架。 华伦桁架也许是包括简单或是连续桁架中最常见的型式。 对于跨度 较小的,无垂直桁架可以给结构一个简单的外观(见插图1)。对于跨度较大的桁架桥,垂直桁架可以提供额外的力(见插图 2)。华伦结构跨度通常为 50100 米。普拉特桁架因其对角线桁架组成除了两边均向跨度中心倾斜而得名。 除了靠 近中心的对角线桁架,其他所有的桁架只有在垂直短桁架受压力时受到斜拉力。 这就使得可以用较为稀薄的桁架构成使得设计更为经济。豪威桁架(见插图 4)是普拉特桁架相反的结构。对角线桁架朝向相反方向 并承担压力。这对于钢桥来说是非常不经济的,因此它的使用也是很少见的。 刚架桥刚构桥梁有时也被称为
6、框架结构的桥梁。 在标准的梁桥中, 主梁和桥墩是分 开的结构。然而刚构桥中主梁和桥墩是一个整体。刚构桥的横截面通常是 I 型或是箱型。连续刚构桥的设计计算比简支梁桥复 杂。桥墩和主梁的连接处制作困难,需要计算准确且注重细节。尽管有许多可能的理论形状,但是近些年来使用的结构形式只有n型, 斜腿 形和 V 字型框架。斜腿刚构桥特别适合于跨越河流山谷, 因为倾斜一定角度的桥墩可以有效的 跨越障碍而不需在河流中央修建基础或在山谷中修建桥墩(见插图1)。V型刚构桥可以有效地利用基础。每个 V字型墩提供两个支撑梁的力,同时 减少基础的数量,从而使得外形更加简单。 (见插图 3)n型刚构结构通常用于内城高速
7、公路的桥墩或是支撑。该框架支撑起高出的公路,同时允许车辆从桥下直接通过。 (见插图 2)拱桥在梁桥之后,拱桥是第二古老的桥式和经典结构。 不像简支梁桥, 拱桥非常 适合用石材建造。 许多古老知名的拱桥时至今日仍然伫立着。 穿越山谷与河流拱 桥是个很好的选择, 因为拱桥在中间部分不需要桥墩支撑。 拱桥可以成为更美桥 型之一。拱桥使用曲拱结构, 提供一个高抗弯力。 不像梁桥和桁架桥, 拱桥的两端固 定在同一水平方向上(即不允许水平方向运动存在于轴之中) 。因此当负载在桥 上(如一辆车通过时) 水平力就会在拱的轴承中产生。 这些水平力对于拱桥来说 是独特的,因此拱桥只能应用于地面基础牢固稳定的地方。
8、就像桁架桥一样,道路可能越过(见插图 1)或者通过拱(见插图 4)或者 在某种情况下,两者都有(见插图 3)。结构上拱桥有四种基本结构形式:无铰 拱,双铰拱,三铰拱和系杆拱桥。无铰拱(见插图 1)没有铰并且不允许基础的转动。因此基础会承受大量的 荷载(水平,垂直,弯曲力) ,因此无铰拱只能在地面基础十分稳定的情况下修 建。然而,无铰拱是一种非常僵硬的结构比其他拱产生的挠度也就相对少了。两铰拱(见插图 2)使用了允许转动的铰接轴承。在轴承中只产生水平和垂 直力。这或许是最常用的钢拱的更改,通常也是一个经济的设计方式。三铰拱(见插图 3)增加了一个铰链在拱的顶部。 三铰拱因基础运动 (地震, 下沉
9、等)受到的影响较小。然而,三铰拱会遭受等多的挠度影响,铰链很复杂, 难以制作。因此三铰拱很少使用。系杆拱桥(见插图 4)是一种组合式拱桥,允许在地面不够稳固以抵抗水平 力的变化的情况下建造。 连接拱的两端和本身而不是依赖基础来承受水平力, 因 此称之为系杆拱桥。斜拉桥一座典型的斜拉桥(见插图 1和 2)是与一个或多个塔柱连续梁跨度中间桥 墩的架设。缆绳从这些塔柱上拉下(通常向两边)来支撑主梁。钢缆绳非常强韧有弹性。 钢缆绳非常经济, 且可以形成细长结构但仍然能跨 越较远距离。 尽管少数的缆绳强度就足以支撑整个桥, 他们的弹性使得缆绳很难 承受我们很难考虑到得力:风力。对于跨度较大的斜拉桥, 必
10、须做出仔细研究来确保缆绳和桥梁在风力作用下 的稳定情况。桥的重量越轻,对于风力的抵抗能力越弱,但是对于抵抗地震却是有利的。 但是,地震或是时间推移下地基的不均匀沉降会使斜拉桥产生破坏, 因此必须认 真规划基础。斜拉桥即现代又简洁的外观,使之成为有吸引力独特的地标。缆绳的独特属性以及其作为一个整体结构, 使得斜拉桥的设计十分复杂。 较 大跨度的斜拉桥, 风力和温度的影响必须考虑, 这个计算是非常复杂的, 不得不 借助计算机和计算机分析。 斜拉桥桥索的制作也比较困难。 桥索的布线和主塔的 附件构造复杂,需要精密制造。斜拉桥没有明显的分类。但是,它可以根据跨越数,塔柱数,主梁类型和缆 绳数量区分。
11、塔柱的数量和类型有很多变化, 缆绳的数目和排列也有变化。 典型 的主塔形式有:单柱、双柱、门形或是 A型(见插图2和3)。桥索的排列也不尽相同。典型的型式有单面、扇形、竖琴型、星型(见插图 4)。在某些情况下, 桥索只有在塔柱的一侧安装在梁上, 另一侧被锚固在基础上 或用以其他力来平衡。悬索桥现如今使用的所有桥型中,悬索桥是跨越距离最长的桥型。乍一看 , 这和悬 浮的斜拉桥可能看起来很相似 , 但他们有很大的不同。虽然大跨度悬索桥现如今 技术领先 , 但他们其实是一种很古老的形式的桥。一些最原始的悬索桥的例子是 使用藤蔓和绳子作为缆索。金属的发展带来了铁棍和锁链的使用。但是知道钢丝索的引进才使
12、得跨越 500 米以上成为现实。今天明石海峡大桥拥有世界最长的1991米的跨度。典型的悬索桥是与一个或多个桥塔通过缆绳与主梁在桥墩中央相连。 主梁本 身在较短的跨度下是桁架或是箱梁, 板梁并不少见。 桥的两端通过放置大型锚固 设备或是重物用以固定缆绳。主缆延伸从一个锚锭越过塔顶连接到另一个锚锭处。 这种跨越结构的缆绳称 之为马鞍(检查图 2)。马鞍型允许缆绳从一边到另一边顺利地传递荷载。从主缆悬挂下来的像挂钩一样的小缆绳悬挂下来连接在主梁上。 有些悬索桥 不适用锚锭,缆绳直接连接主梁的两端。依靠这些自锚悬索桥跨度的重量 , 以平 衡中心跨度和锚定缆绳。因此,不同于普通桥梁依靠墩台承重, 悬索桥
13、主梁或是桥面板实际上是悬挂 在主索上。桥的大部分重量和车辆荷载都被缆索承担。 反过来,缆绳由主塔支撑, 因此主塔就必须支撑大量的重量。正如以上解释的斜拉大桥钢缆索强度极强 , 然而灵活。就像一个很强韧的绳 子, 那将是很好的为悬挂或拉一些事的选择 ,但是试图推动物体是没有用的。 大跨 度悬索桥尽管在普通交通荷载下很强韧, 极易受到风荷载的作用。 必须采取特殊 的措施以确保大桥在强风下不晃动或是振动。最著名的空气动力不稳定的大桥的例子是美国华盛顿州的塔科玛湾海峡大 桥。这篇英国布里斯托尔大学对于塔科玛湾海峡大桥灾难的优秀的网页照片和短 片会解释为什么空气动力稳定性如此重要。BridgesGird
14、er BridgeA girder bridge is perhaps the most com mon and most basic bridge. A log across a creek is an example of a girder bridge in its simplest form. In moder nsteel girder bridges, the two most com mon girders are I-beam girders and box-girders.FlangeFlangeWtbIf we look at the cross secti on of a
15、n I-beam girder we can immediately understand why it is called an Ibeam (illustrati on #1.) The cross sect ion of the girder takes the shape of the capital letter I. The verticalplate in the middle is known as the web, and the top and bottom plates are referred to as flan ges. To expla in why the I
16、shape is an efficie nt shape for a girder is a long and difficult task so we won't attempt that here.Typ cal Span Lengths1 Dm - 200mWorld's LongestPonte Costa a Silva. Braz ITotal LengthCenler Span7OOrn300mA Matsuo ExampleA box girder is much the sameFlange即亦-FimgEHowever, i n some cases the
17、re are more tha n two webs, creati ng a multipleas an I-beam girder except that, obviously, it takes the shape of a box. The typical box girder has two webs and two flan ges (illustrati on #2.)chamber box girder.Other examples of simple girders in clude pi girders, n amed for their like ness to the
18、mathematical symbol for pi, and T shaped girders. Since the majority of girder bridges these days are built with box or I-beam girders we will skip the specifics of these rarer cases.Now that we know the basic physical differe nces betwee n box girders and I-beam girders, let's look at the adva
19、ntages and disadva ntages of each. AnI-beam is very simple to desig n and build and works very well in most cases. However, if the bridge contains any curves, the beams become subject to twist ing forces, also known as torque. The added sec ond web in a box girder adds stability and in creases resis
20、ta nee to twist ing forces. This makes the box girder the ideal choice for bridges with any significant curve in them.Box girders, being more stable are also able to spa n greater dista nces and are ofte n used for Ion ger spa ns, where I-beams would not be sufficie ntly strong or stable. However, t
21、he design and fabrication of box girders is more difficult than that of I beams. For example, in order to weld the in side seams of a box girder, a huma n or weld ing robot must be able to operate in side the box girder.TrussThe truss is a simple skeletal structure. I n desig n theory, the in dividu
22、al members of a simple truss are on ly subject to tension and compressi on forcesand not bending forces.Thus, for the most part, all beams in a truss bridge are straight. Trusses areTypical Span Lengths40m - 500mWorld's LongestPont de QuebecTota. Length863mCenter Span549mA Matsuo Exannp 92nd M a
23、mevakl Brldae/WVWcomprised of many small beams that together can support a large amount of weight and spa n great dista nces. In most cases the desig n, fabricati on, and erecti on of trusses is relatively simple. However, once assembled trusses take up a greater amount of space an d, i n more compl
24、ex structures, can serve as a distracti on to drivers.Like the girder bridges, there are both simpleand con ti nu ous trusses. The small size of in dividual parts of a truss make it the ideal bridge for places where large parts or secti ons cannot be shipped or where large cranes and heavy equipme n
25、t cannot be used duri ng erecti on. Because the truss is a hollow skeletal structure, the roadway may pass over (illustrati on #2) or eve n through (illustrati on #1) the structure allow ing for cleara nee below the bridge ofte n not possible with other bridge types. Trusses are also classified by t
26、he basic desig n used. The most represe ntative trusses are the Warren truss, the Pratt truss, and the Howe truss. The Warre n truss is perhaps the most com mon truss for both simple and continu ous trusses. For smaller spa ns, no vertical members are used lending the structure a simple look (illust
27、rati on #1.) For Ion ger spa ns vertical members are added provid ing extra stre ngth (illustrati on #2.) Warre n trusses are typically used in spa ns of betwee n 50-100m.The Pratt truss (illustrati on #3) is ide ntified by its diago nal members which, except for the very end on es, all sla nt dow n
28、 and in toward the cen ter of the spa n. Except for those diag onal members n ear the cen ter, all the diag onal members are subject to tension forces only while the shorter vertical members han dle the compressive forces. This allows for thinner diag onal members result ing in a more econo mic desi
29、g n. The Howe truss (illustrati on #4) is the opposite of the Pratt truss. The diagonal members face in the opposite directi on and han dle compressive forces. This makes it very uneconomic design for steel bridges and its use is rarely see n.Rigid FrameRigid frame bridges are sometimes also known a
30、s Rahme n bridges. In a sta ndard girder bridge, the girder and the piers are separate structures. However, a rigid frame bridge is one in which the piers and girder are one solid structure.The cross secti ons of the beams in a rigid frame bridge are usually I shaped or box shaped. Design calculatio
31、ns for rigid frame bridges are more difficult than those of simple girder bridges. The junction of the pier and the girder can be difficult to fabricate and requires accuracy and atte nti on to detail.Though there are many possible shapes, the styles used almost exclusively these days are the pi-sha
32、ped frame, the batter post frame, and the V shapedframe.The batter post rigid frame bridge is particularly well suited for river and valley crossings because piers tilted at an an gle can straddle the cross ing moreeffectively without requiring the construction of foundations in the middle of theriv
33、er or piers in deep parts of a valley (illustratio n #1).V shaped frames make effective use of foun dati ons. Each V-shaped pier provides two supports to the girder, reduc ing the nu mber of foun dati ons and creati ng a less cluttered profile (illustrati on #3.)frequently as the piers and supports
34、for inner city highways. The frame supports the raised highway and at the same time allows traffic to run directly under the bridge (illustrati on #2.)Pi shaped rigid frame structures are usedArchAfter girders, arches are the sec ond oldest bridge type and a classic structure. Un like simple girder
35、bridges, arches are well suited to the use of stone. Many an cie nt and well know examples of stone arches still sta nd to this day. Arches are good choices for cross ing valleys and rivers since the arch does n't require piers in the center. Arches can be one of the more beautiful bridge types.
36、Tiraispan l$ 苇40m Woitn Longaitd River日丐吏 u.SATotal lengthW4rnC*ni*r 辟an5i BmA MgSsuoEMamip-eArches use a curved structure which provides a high resista nee to bending forces. Un like girder and truss bridges, both ends of an arch are fixed in the horiz on tal directi on (i.e. no horiz on tal moveme
37、 nt is allowed in the beari ng). Thus whe n a load is placed on the bridge (e.g. a car passes over it) horiz on tal forces occur in the beari ngs of the arch. These horiz on tal forces are unique to the arch and as a result arches can only be used where the ground or foun dati on is solid and stable
38、Like the truss, the roadway may pass over (illustratio n #1) or through an arch (illustrati on #4) or in some cases both (illustrati on #3.) Structurally there are four basic arch types: hin ge-less, two-h in ged, three hin ged and tied arches.bending forces) and the hin ge-less arch c very stable.
39、However, the hin ge-less arch less deflect ion tha n other arches.The hin ge-less arch (illustratio n #1) uses no hin ges and allows no rotati on at the foun dati ons. As a result a great deal of force is gen erated at the foun dati on (horiz on tal, vertical, and 汨 only be built where the ground is
40、 is a very stiff structure and suffersThe two hin ged arch (illustrati on #2) uses hin ged beari ngs which allow rotati on.The only forces gen erated at the beari ngs are horiz on tal and vertical forces. This is perhaps the most com monly used variati on for steel arches and is gen erally a very ec
41、ono mical desig n.The three-hinged arch (illustration #3) adds an additi onal hinge at the top or crow n of the arch. The three-h in ged arch suffers very little if there is moveme nt in either foun dati on (due toearthquakes, sinking, etc.) However, the three-hi nged arch experie nces much more def
42、lecti on and the hin ges are complex and can be difficult to fabricate.The three-hi nged arch is rarely used anymore.The tied arch (illustrati on #4) is a variati on on the arch which allowscon struct ion eve n if the ground is not solid eno ugh to deal with the horiz on tal forces. Rather tha n rel
43、 ying on the foun dati on to restrain the horiz on tal forces, the girderitself "ties" both ends of the arch together, thus the name "tied arch."Cable StayedA typical cable stayed bridge (illustratio n #1 & 2) is a con ti nu ous girder withone or more towers erected above pie
44、rs in the middle of the spa n. From thesetowers, cables stretch dow n diag on ally (usually to both sides) and support thegirder.Steel cables are extremely stro ng but very flexible. Cables are very econo mical as they allow a slender and lighter structure which is still able to spa n great dista nc
45、es.Though only a few cables are strong eno ugh to support the en tire bridge, theirflexibility makes them weak to a force we rarely con sider: the wind.guara ntee the stability of the cables and the bridge in the wind.Typical Span L«ngth>113m-4E0mWorW's Lowest Tatara Bridge. Japan Total
46、Length ' ,430m Center Span 890mA Matiuo Exampl*Fsnrunri: Tsobasa 日riciqEFor Ion ger spa n cable-stayed bridges, careful studies must be made toThe lighter weight of the bridge, though a disadva ntage in a heavy win d, is an adva ntage duri ng an earthquake. However, should un eve n settl ing of
47、the foun dati ons occur duri ng an earthquake or over time, the cable-stayed bridge can suffer damage so care must be take n in pla nning the foun datio ns. The moder n yet simple appeara nee of the cable-stayed bridge makes it an attractive and dist inct Ian dmark.The unique properties of cables, a
48、nd the structure as a whole, make the desig n of the bridge a very complex task. For Ion ger spa ns where winds andtemperatures must be con sidered, the calculati ons are extremely complex and would be virtually impossible without the aid of computers and computer analysis. The fabrication of cable
49、stay bridges is also relatively difficult. The cable routi ng and attachme nts for the girders and towers are complex structures requiri ng precisi on fabricati on.There are no dist inct classificati ons for cable-stayed bridges. However, theyPorudAShapedcan disti nguished by the nu mber of spa ns,
50、nu mber of towers, girder type, nu mber of cables, etc. There are many variati ons in the nu mber and type of towers, as well as the nu mber and arran geme nt of cables. Typical towers used aresin gle, double, portal, or eve n A-shaped towers (illustrati on #2 & 3.)ITCable arran geme nts also va
51、ry greatly. Some typical varieties are mono, harp, fan, and star arran geme nts (illustrati on #4.) In some cases, on ly the cables on one side of the tower are attached to the girder, the other side being an chored to a foun dati on or other coun terweight.Typica? Span Lengths7 Dm - 1,000m+Wond'
52、;-s LongestAkashi Kalkyc Bridge. JapanTotal Length3.911mCenter Span1.591mA Matsuo ExampleHakucho BridaeOhnaruto Brlda甘SuspensionOf all the bridge types in use today, the suspe nsion bridge allows for the Ion gest spa ns. At first gla nce the suspe nsion and cable-stayed bridges may look similar, but
53、 they are quite differe nt. Though suspe nsion bridges are leadi ng long spa n tech no logy today, theyare in fact a very old form of bridge. Some primitive examples of suspension bridges use vines and ropes for cables.The developme nt of metals brought the use of lin ked iron bars and cha ins. But
54、it was the in troduct ion of steel wire ropes that allowed spa ns of over 500m to become a reality. Today the Akashi Kaikyo bridge boasts the world's Ion gest cen ter spa n of any bridge at 1,991 meters.A typical suspe nsion bridge (illustrati on #1) is a con ti nu ous girder with one or more towers erected above piers in the middle of the span. The girder itself it usually a truss or box girder though in shorter spa ns, plate girders are not un com mon. At both ends of the bridge large an chors or coun ter weights are placed to hold the ends of the
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程法规考试的取胜之道试题及答案
- 2025年工程法规考试实际案例试题及答案
- 2025年环境公众参与评价在环境与乡村振兴中的应用报告
- 2025年药品企业智能化生产系统建设成本与收益评估报告
- 中药配方颗粒质量标准与行业未来发展报告
- 提升审计能力2025年财务管理考试试题及答案
- 医疗支付中的数字化金融服务创新
- 2025年工程法规考试的重要思路试题及答案
- 2025年中级会计实务考试成绩提升试题及答案
- 2025年中国阻燃剂行业市场发展现状及投资前景预测报告
- 安徽省1号卷A10联盟2025届高三5月最后一卷化学试题及答案
- 2022《农产品质量安全法》全文解读与学习
- 2025届河北省邢台市清河中学高三下学期5月模拟物理试卷(原卷版+解析版)
- 2025年全国保密教育线上培训考试试题库附参考答案(巩固)带答案详解
- 【部编版】六年级语文下册《语文园地五》精美课件
- 登革热防控知识培训
- 糖尿病患者血脂管理中国专家共识(2024版)解读
- 药物制剂辅助材料试题及答案
- 消防安全有关的重点工种人员及消防安全管理
- APG IV 系统(修订版)
- OPEN-3000系统安装操作系统及公共软件-LINUX分册(redhat-5.4)—20120713(1)
评论
0/150
提交评论