




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、目 录摘要II关键词IIAbstractIIKeywordsII引言11 旅行商问题和模拟退火算法21.1 旅行商问题21.1.1 旅行商问题的描述21.1.2 旅行商问题的应用31.2 模拟退火算法31.2.1 基本思想31.2.2 关键技术41.3 小结42 TSP模拟退火算法的实现52.1 TSP算法实现52.1.1 TSP算法描述52.1.2 TSP算法流程52.2 TSP的MATLAB实现62.2.1 加载数据文件62.2.2 计算总距离的函数72.2.3 绘制路线的函数72.2.4 交换城市的函数82.2.5 执行模拟退火的函数82.3 小结93 仿真实例103.1 仿真分析与评价
2、103.2 结论12总结与展望12致谢13参考文献13基于模拟退火算法的旅行商问题求解 光信息科学与技术 董铸祥 指导教师 张明强摘要: 旅行商问题是组合优化领域里的一个典型的、易于描述却难以处理的NP难题,其可能的路径数目与城市数目是呈指数型增长的,求解非常困难。首先介绍了旅行商问题,给出了其数学描述以及实际应用,进而给出解决TSP的一种比较精确的算法模拟退火算法。然后阐述了模拟退火算法的基本原理,重点说明了其基本思想及关键技术。最后运用MATLAB语言实现了该算法,并将其运用到解决旅行商问题的优化之中。数值仿真的结果表明了该方法能够对数据进行全局寻优,有效克服了基于导数的优化算法容易陷入局
3、部最优的问题。关键词: 模拟退火 旅行商 NP 组合优化Solution of Travelling Salesman ProblemBaced on Simulated Annealing AlgorithmOptical Information Science and Technology Dong ZhuxiangTutor Zhang MingqiangAbstract: Travelling Salesman Problem is one of the typical NP-hard problems in combinatorial optimization, which is e
4、asy to be described but hard to be solved. Its possible amounts of path increase exponentially with the amounts of city, so it is very difficult to solve it. First this paper introduces Travelling Salesman Problem, gives TSP mathematical description and practical application.In turn, a precise algor
5、ithmsimulated annealing algorithmthe to the address of TSP is given. And then this paper describes the basic principle of simulated annealing, highlights the basic ideas and key technology. Finally, we use MATLAB language to implement the algorithm, and applied it to solve the traveling salesman pro
6、blem into the optimization. Numerical simulation results show that this method can globally optimizes data, effectively overcomes the problem of derivative-based optimization algorithm which is easy fall into local optimum. Keywords: simulated annealing; travelling salesman problem;Non-deterministic
7、Polynomial; combinatorial optimization12引言旅行商问题(Traveling Salesman Problem,TSP),也称为货郎担问题,是由爱尔兰数学家Sir William Rowan Hamilton和英国数学家Thomas Penyngton Kirkman在19世纪提出的数学问题,它是指给定n个城市并给出每两个城市之间的距离,旅行商必须以最短路径访问所有的城市一次且仅一次,并回到原出发地,现已证明它属于NP(Non-deterministic Polynomial-非确定多项式)难题1。历史上的第一个正式用来解决TSP问题的算法诞生于1954年
8、,它被用来计算49个城市的TSP问题。到现在为止,运用目前最先进的计算机技术可解决找出游历24978个城市的TSP问题。TSP的历史很久,最早的描述是1759年欧拉研究的骑士周游问题,即对于国际象棋棋盘中的64个方格,走访64个方格一次且仅一次,并且最终返回到起始点。旅行商问题(TSP)由美国RAND公司于1948年引入,该公司的声誉以及线性规划这一新方法的出现使得TSP成为一个知名且流行的问题2。旅行商问题是一个经典的图论问题:设有n个城市,用Ci,j=1,2,n表示。城市Ci,j之间的距离为di,j,i,j=1,2,n,设所有城市间两两连通,旅行商需要跑遍n个城市去推销他的商品,而这些城市
9、之间的距离都不一样,这推销员需要从其中一个城市出发,而他老板规定他必须把所有城市跑一遍,则TSP问题就是寻找让旅行商遍访每个城市一次且恰好一次的一条回路,且要求其路径总长度为最短。该问题也可以归结为:有N个城市由公路相互连通,从任一城市到另外城市都要支付相应的费用,一个销售商从其中一城市出发,访问其他N1个城市且仅一次,如何规划一条路径,使该旅行商的花费最少3。当城市数量较小时,通过枚举法就可以找出最短的路径,然而随着问题规模的增加,很难找到一个多项式时间复杂度的算法来求解该问题。TSP是一个典型的组合优化问题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优
10、化算法的间接比较标准。因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。旅行商问题代表的一类组合优化问题,在物流配送、计算机网络、电子地图、交通诱导、电气布线、VLSI单元布局等方面都有重要的工程和理论价值,引起了许多学者的关注。TSP是典型的组合优化问题,并且是一个NP-hard问题。TSP描述起来很简单,早期的研究者使用精确算法求解该问题,TSP问题最简单的求解方法是枚举法。它的解是多维的、多局部极值的、趋于无穷大的复杂解的空间,搜索空间是n个点的所有排列的集合,大小为(n-1)!。可以形象地把解空间看成是一个无穷大的丘陵地带,各山峰或山谷的高度即是问题的极值。求解TSP
11、,则是在此不能穷尽的丘陵地带中攀登以达到山顶或谷底的过程2。常用的方法包括:分枝定界法、线性规划法和动态规划法等,但可能的路径总数随城市数目n是成指数型增长的,所以当城市数目在100个以上一般很难精确的求出其全局最优解。随着人工智能的发展,出现了许多独立于问题的智能优化算法,如蚁群算法、遗传算法、模拟退火、禁忌搜索、神经网络、粒子群优化算法、免疫算法等,通过模拟或解释某些自然现象或过程而得以发展,为解决复杂组合优化问题提供了新的思路和方法4。模拟退火算法在迭代搜索过程以Boltzmann分布概率接受目标函数的“劣化解”,具有突出的具有脱离局域最优陷阱的能力,同时具有较强的局部搜索能力,从而可以
12、获取目标函数的全局最优解。因为模拟退火算法具有高效、通用、灵活的优点,将模拟退火算法引入TSP求解,可以避免在求解过程中陷入TSP的局部最优解5。本文首先介绍传统的TSP问题,先对其进行数学描述,又列举TSP问题的应用。之后介绍模拟退火算法,主要介绍其基本思想和关键技术,在此基础上将模拟退火的思想引入TSP的求解,设计出TSP的一种模拟退火算法并用MATLAB语言编程予以实现。1 旅行商问题和模拟退火算法1.1 旅行商问题1.1.1 旅行商问题的描述旅行商问题(Traveling Salesman Problem,简称TSP)又名货郎担问题,是威廉·哈密尔顿爵士和英国数学家克克曼(T
13、.P.Kirkman)于19世纪初提出的一个数学问题,也是著名的组合优化问题。问题是这样描述的:一名商人要到若干城市去推销商品,已知城市个数和各城市间的路程(或旅费),要求找到一条从城市1出发,经过所有城市且每个城市只能访问一次,最后回到城市1的路线,使总的路程(或旅费)最小。TSP刚提出时,不少人认为这个问题很简单。后来人们才逐步意识到这个问题只是表述简单,易于为人们所理解,而其计算复杂性却是问题的输入规模的指数函数,属于相当难解的问题。这个问题数学描述为:假设有n个城市,并分别编号,给定一个完全无向图G=(V,E),V=1,2,n,n>1。其每一边(i,j)E有一非负整数耗费 Ci,
14、j(即上的权记为Ci,j,i,jV)。并设 G的一条巡回路线是经过V中的每个顶点恰好一次的回路。一条巡回路线的耗费是这条路线上所有边的权值之和。TSP问题就是要找出G的最小耗费回路。人们在考虑解决这个问题时,一般首先想到的最原始的一种方法就是:列出每一条可供选择的路线(即对给定的城市进行排列组合),计算出每条路线的总里程,最后从中选出一条最短的路线。假设现在给定的4个城市分别为A、B、C和D,各城市之间的耗费为己知数,如图1所示。我们可以通过一个组合的状态空间图来表示所有的组合,如图 图 1-1 顶点带权图 图 1-2 TSP问题的解空间树从图中不难看出,可供选择的路线共有6条,从中很快可以选
15、出一条总耗费最短的路线:顶点序列为(A,C,B,D,A)。由此推算,若设城市数目为n时,那么组合路径数则为(n-1)!。很显然,当城市数目不多时要找到最短距离的路线并不难,但随着城市数目的不断增大,组合路线数将呈指数级数规律急剧增长,以至达到无法计算的地步,这就是所谓的“组合爆炸问题”。假设现在城市的数目增为20个,组合路径数则为(20-1)!1.216×1017,如此庞大的组合数目,若计算机以每秒检索1000万条路线的速度计算,也需要花上386年的时间6。1.1.2 旅行商问题的应用TSP是最有代表性的优化组合问题之一,其应用已逐步渗透到各个技术领域和我们的日常生活中。它一开始是为
16、交通运输而提出的,比如飞机航线安排、送邮件、快递服务、设计校车行进路线等等。实际上其应用范围扩展到了许多其他领域,如在VLSI芯片设计、电路板布局、机器人控制、车辆选路、物流配送等方面,下面举几个实例。1电路板钻孔进度的安排。机器在电路板上钻孔的调度问题是TSP应用的经典例子,在一电路板上打成百上千个孔,转头在这些孔之间移动,相当于对所有的孔进行一次巡游。把这个问题转化为TSP,孔相当于城市,转头从一个孔移到另一个孔所耗的时间相当于TSP中的旅费。2车辆选路。一个经典的路由问题是在一个网络上发现从源节点到一个目的节点的最佳交通线路,使与距离成比例的流动费用降低到最小。这个问题的关键是在交通网络
17、上计算从源节点到目的节点之间的最短路径。对这个最小费用流动问题进行扩展,就构成TSP问题,在这个问题中,车辆从源点出发访问多个目的地并且最后回到源点。3.基因测序。Cnoocdre是一种求解旅行商问题的程序。美国国家卫生机构的研究人员利用这一程序来进行基因测序。在这一应用中,DNA片断作为城市,它们之间的相似程度作为城市与城市的距离。研究人员试图寻找一种可能性最高的连接方式把这些DNA片断合成为整张DNA。更重要的是,TSP提供了一个研究组合优化问题的理想平台。很多组合优化问题,比如背包问题、分配问题、车间调度问题,和TSP同属NP-Hard类,它们难度同等,如果其中一个能用多项式确定性算法解
18、决,那么其他所有的NP-Hard类问题也能用多项式确定性算法解决。很多方法都是从TSP发展起来的,后来推广到其他NP-Hard类问题上去。1.2 模拟退火算法 模拟退火算法由KirkPatrick于1982提出7,他将退火思想引入到组合优化领域,提出一种求解大规模组合优化问题的方法,对于NP-完全组合优化问题尤其有效。模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其缓慢降温(即退火),使之达到能量最低点。反之,如果急速降温(即淬火)则不能达到最低点。加温时,固体内部粒子随温升变为无序状,内能增大,而缓慢降温时粒子渐趋有序,在每个温度上都达到平衡态,最后在常温时达到基态,内能减为最小。
19、根据Metropolis准则,粒子在温度T时趋于平衡的概率为exp(-E/(kT),其中E为温度T时的内能,E为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复产生“新解计算目标函数差接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子a、每个t值时的迭代次数L和停止条件C。1.2
20、.1 基本思想 模拟退火算法可以分解为解空间、目标函数和初始解3部分。其基本思想是:(1)初始化:初始温度T(充分大),初始解状态s(是算法迭代的起点),每个T值的迭代次数L;(2)对k=1,L做第(3)至第6步;(3)产生新解s;(4)计算增量cost=cost(s)-cost(s),其中cost(s)为评价函数;(5)若t0则接受s作为新的当前解,否则以概率exp(-t/T)接受s作为新的当前解;(6)如果满足终止条件则输出当前解作为最优解,结束程序。终止条件通常取为连续若干个新解都没有被接受时终止算法;(7)T逐渐减少,且T趋于0,然后转第2步运算。 1.2.2 关键技术(1)新解的产生
21、和接受模拟退火算法新解的产生和接受可分为如下4个步骤:由一个函数从当前解产生一个位于解空间的新解。为便于后续的计算和接受,减少算法耗时,常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等。产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。判断新解是否被接受。判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则:若t0则接受S作为新的当前解S,否则以概率
22、exp(-t/T)接受S作为新的当前解S。当新解被确定接受时,用新解代替当前解。这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代,可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。(2)参数控制问题模拟退火算法的应用很广泛,可以求解NP完全问题,但其参数难以控制,其主要问题有以下3点7:温度T的初始值设置。温度T的初
23、始值设置是影响模拟退火算法全局搜索性能的重要因素之一。初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时间;反之,则可节约计算时间,但全局搜索性能可能受到影响。实际应用过程中,初始温度一般需要依据实验结果进行若干次调整。温度衰减函数的选取。衰减函数用于控制温度的退火速度,一个常用的函数为: 式中是一个非常接近于1的常数,t为降温的次数。马尔可夫链长度L的选取。通常的原则是:在衰减参数T的衰减函数已选定的前提下,L的选取应遵循在控制参数的每一取值上都能恢复准平衡的原则。1.3 小结 本章而要的介绍了旅行商问题与模拟退火算法,首先对旅行商问题做了描述并举例其应用,然后介绍了模拟退火
24、算法的来源,重点介绍了模拟退火算法的基本思想和关键技术。通过本章的分析,使我们理解了模拟退火算法的基本原理并且知道了TSP问题的数学描述,为下面将该算法其应用于旅行商问题做了准备。2 TSP模拟退火算法的实现 TSP是典型的组合优化问题,模拟退火算法是一种随机性解决组合优化方法。将TSP与模拟退火算法相结合,以实现对其求解。2.1 TSP算法实现2.1.1 TSP算法描述 (1)TSP问题的解空间和初始解 TSP的解空间S是遍访每个城市恰好一次的所有回路,是所有城市排列的集合。TSP问题的解空间S可表示为1,2,n的所有排列的集合,即S = (c1,c2,cn) | (c1,c2,cn)为1,
25、2,n的排列),其中每一个排列Si表示遍访n个城市的一个路径,ci= j表示在第i次访问城市j。模拟退火算法的最优解与初始状态无关,故初始解为随机函数生成一个1,2,n的随机排列作为S0。(2)目标函数 TSP问题的目标函数即为访问所有城市的路径总长度,也可称为代价函数: 现在TSP问题的求解就是通过模拟退火算法求出目标函数C(c1,c2,cn)的最小值,相应地,s*= (c*1,c*2,c*n)即为TSP问题的最优解。 (3)新解产生新解的产生对问题的求解非常重要。新解可通过分别或者交替用以下2种方法产生:二变换法:任选序号u,v(设uvn),交换u和v之间的访问顺序,若交换前的解为si=
26、(c1,c2,cu,cv,cn),交换后的路径为新路径,即:si= (c1,cu-1,cv,cv-1,cu+1,cu,cv+1,cn)三变换法:任选序号u,v和(uv),将u和v之间的路径插到之后访问,若交换前的解为si= (c1,c2,cu,cv,c,cn),交换后的路径为的新路径为:si= (c1,cu-1,cv+1,c,cu,cv,c+1,cn)(4)目标函数差计算变换前的解和变换后目标函数的差值:c= c(si)- c(si)(5)Metropolis接受准则根据目标函数的差值和概率exp(-C/T)接受si作为新的当前解si,接受准则: 2.1.2 TSP算法流程 根据以上对TSP的
27、算法描述,可以写出用模拟退火算法解TSP问题的流程图2-1所示:图 2-1 TSP的模拟退火流程2.2 TSP的MATLAB实现2.2.1 加载数据文件下面是加载数据文件的一个例子:function d = datafile()cities =0.6606,0.9695,0.5906,0.2124,0.0398,0.1367,0.9536,0.6091,0.8767,.0.8148,0.3876,0.7041,0.0213,0.3429,0.7471,0.5449,0.9464,0.1247,0.1636,.0.8668,;0.9500,0.6740,0.5029,0.8274,0.9697,
28、0.5979,0.2184,0.7148,0.2395,.0.2867,0.8200,0.3296,0.1649,0.3025,0.8192,0.9392,0.8191,0.4351,0.8646,.0.6768;save cities.mat cities -V6;当调用数据文件函数时,包含城市坐标信息的矩阵载入到cities.mat的文件中。该数据文件的第一列通常是城市数量,之后两列为城市的坐标。初始化函数,根据直角坐标生成城市距离矩阵。2.2.2 计算总距离的函数这是一个城市间计算距离的函数,根据给定路径计算该路径对应总路程。function d = distance(inputciti
29、es) % DISTANCE% d = DISTANCE(inputcities)按照要求计算TSP问题中n个城市的距离。% 输入参数有两行和n列,其中n为城市的数目,列为对应城市的坐标。 d = 0; for n = 1 : length(inputcities) if n = length(inputcities) d = d + norm(inputcities(:,n) - inputcities(:,1); else d = d + norm(inputcities(:,n) - inputcities(:,n+1); end end TSP问题的成本函数是城市之间的距离。调用此函数
30、将计算n个城市之间的距离。2.2.3 绘制路线的函数这是一个绘制路线的函数,根据给定的城市坐标生成的城市矩阵绘制城市的坐标,根据给定的路线绘制线路。function f = plotcities(inputcities)% PLOTCITIES% PLOTCITIES(inputcities)从inputcities参数中绘制城市的位置。%inputcities参数有两行和n列,其中n为城市的数量。位置和对称路径都被绘制。temp_1 = plot(inputcities(1,:),inputcities(2,:),b*);set(temp_1,erasemode,none);temp_2 =
31、 line(inputcities(1,:),inputcities(2,:),Marker,*);set(temp_2,color,r);x = inputcities(1,1) inputcities(1,length(inputcities);y = inputcities(2,1) inputcities(2,length(inputcities);x1 = 10*round(max(inputcities(1,:)/10);y1 = 10*round(max(inputcities(2,:)/10);if x1 = 0 x1 = 1;end if y1 = 0 y1 = 1;enda
32、xis(0 x1 0 y1);temp_3 = line(x,y);set(temp_3,color,r);dist = distance(inputcities);distance_print = sprintf(.The roundtrip length for %d cities is % 4.6f units. ,length(inputcities),dist);text(x1/15,1.05*y1,distance_print,fontweight,bold);drawnow;2.2.4 交换城市的函数 这是一个用于城市交换的函数,它从某路径的邻域中随机的选择一个新的路径。 fun
33、ction s = swapcities(inputcities,n)% SWAPCITIES% s = SWAPCITIES(inputcities,n)n个城市随机的交换返回一组m个城市s = inputcities; for i = 1 : n city_1 = round(length(inputcities)*rand(1); if city_1 < 1 city_1 = 1; end city_2 = round(length(inputcities)*rand(1); if city_2 < 1 city_2 = 1; end temp = s(:,city_1);
34、s(:,city_1) = s(:,city_2); s(:,city_2) = temp; end2.2.5 执行模拟退火的函数function s = simulatedannealing(inputcities,initial_temperature,.cooling_rate,threshold,numberofcitiestoswap)% SIMULATEDANNEALING% S = SIMULATEDANNEALING(inputcities,initial_temperature,cooling_rate)通过% n 个城市的TSP问题的最优解返回一个新的城市构型。 globa
35、l iterations;temperature = initial_temperature;initial_cities_to_swap = numberofcitiestoswap;iterations = 1;complete_temperature_iterations = 0;while iterations < threshold previous_distance = distance(inputcities); temp_cities = swapcities(inputcities,numberofcitiestoswap); current_distance = di
36、stance(temp_cities); diff = abs(current_distance - previous_distance); if current_distance < previous_distance inputcities = temp_cities; plotcities(inputcities); if complete_temperature_iterations >= 10 temperature = cooling_rate*temperature; complete_temperature_iterations = 0; end numberofc
37、itiestoswap = round(numberofcitiestoswap. *exp(-diff/(iterations*temperature); if numberofcitiestoswap = 0 numberofcitiestoswap = 1; end iterations = iterations + 1; complete_temperature_iterations = complete_temperature_iterations + 1; else if rand(1) < exp(-diff/(temperature) inputcities = temp
38、_cities; plotcities(inputcities); numberofcitiestoswap = round(numberofcitiestoswap. *exp(-diff/(iterations*temperature); if numberofcitiestoswap = 0 numberofcitiestoswap = 1; end complete_temperature_iterations = complete_temperature_iterations + 1; iterations = iterations + 1; end end clc fprintf(
39、tttIterations = %dn,iterations); fprintf(tttTemperature = %3.8fn,temperature); fprintf(tttIn current temperature for %d timesn,. complete_temperature_iterations);endprevious_distance输入参数:inputcities的作用是将n个城市的坐标表示两行和n列,并且传递给simulatedannealing作为新的参数。initial_temperature则是开始模拟退火过程的起始温度。cooling_rate是模拟退火
40、过程的冷却速率,冷却速率应该始终低于1。threshold是模拟退火的停止条件,并且它是n个城市的可接受的距离。numberofcitiestoswap指定用于交换城市对数量的最大值。随着温度的降低,用于交换的城市对也减少,最终达到一对城市。2.3 小结本章对旅行商问题的模拟退火求解做了分析说明,首先用模拟退火的基本原理对旅行商问题做了理论描述,重点介绍了其解空间、目标函数、新解、以及接收准则,并且给出了TSP的实现流程图。之后用MATLAB实现,分析了各个函数的用途并附有部分源代码。通过本章,我们用MATLAB实现了基于模拟退火算法的旅行商问题的求解。3 仿真实例3.1 仿真分析与评价为了验
41、证用MATLAB实现的模拟退火算法的有效性,选择29个点作为仿真研究对象,它们在坐标平面的坐标(Location)如表3-1所示。表 3-1 29个城市的坐标城市序号12345678910X坐标1150.0630.040.0750.0750.01030.01650.01490.0790.0710.0Y坐标1760.01660.02090.01100.02030.02070.0650.01630.02260.01310.0城市序号11121314151617181920X坐标840.0 1170.0970.0510.0750.01280.0230.0460.01040.0590.0Y坐标550.
42、02300.01340.0700.0900.01200.0590.0860.0950.01390.0城市序号212223242526272829X坐标 830.0 490.01840.01260.01280.0490.01460.01260.0360.0Y坐标1770.0500.01240.01500.0790.02130.01420.01910.01980.0 运行结果如图3-1: 初始温度为2000,交换城市数为2,冷却速率为0.97,29个城市的TSP运行结果如上图,该优化路径的总路程近似为9122。 初始温度为2000,交换城市数为2,冷却速率为0.97,29个城市的TSP运行结果 如
43、上图,该优化路径的总路程近似为9703。 初始温度为2000,交换城市数为2,冷却速率为0.97,29个城市的TSP运行结果如上图,该优化路径的总路程近似为9077。图 3-1 TSP的模拟退火运行界面 上图为用模拟退火算法解决TSP的GUI(Graphics User Interface,图形用户界面)。这是由29个城市构成的一个对称TSP实例,利用上述算法对该实例进行模拟退火求解,设定初始温度T0=2000,冷却速率为0.97,互换城市数为2。经过20次仿真,得到的最优解与已知最优解非常接近,所需时间也令人满意。3.2 结论 本节使用MATIAB对求解TSP问题的模拟退火算法程序进行了仿真。平均结果结果表明,首先该算法能够找到TSP问题的最优解,说明算法的正确性。其次算法对TSP问题的求解时间并不呈指数增长,说明了算法的有效性。总结与展望 模拟退火算法是依据Metropolis准则接受新解,该准则除了接受优化解外,还在一定的限定范围内接受劣解,这正是模拟退火算法与局部搜索法的本质区别,在避免陷入局部极小值、提高解空间的搜索能力和扩大搜索范围方面具有明显的优越性8。本文给
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动仲裁合同十篇
- 食品微生物检验技术试题库及答案
- 2025年事业单位工勤技能-湖北-湖北计算机信息处理员一级高级技师历年参考题库含答案解析
- 2025年事业单位工勤技能-湖北-湖北动物检疫员四级(中级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-海南-海南管道工三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-海南-海南林木种苗工五级(初级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-海南-海南假肢制作装配工五级(初级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-河南-河南图书资料员一级(高级技师)历年参考题库含答案解析
- 2024版挂靠出租车出租合同
- 2025年事业单位工勤技能-江西-江西水利机械运行维护工二级(技师)历年参考题库含答案解析(5套)
- 包扎伤口急救课件
- 2025至2030牙科实践行业项目调研及市场前景预测评估报告
- 小学科学新教材培训心得分享
- 2025秋人教版(2024)八年级上册地理 【教学课件】1.2《人口》
- 2025年广西中考物理真题含答案
- 服装工艺培训课件
- 脑梗死合并高血压护理查房
- 2025届上海市中考语文真题作文题目解析+范文
- 暖通运维面试题库及答案
- 中西医结合治疗过敏性疾病的实践与思考
- 路面注浆打孔合同范本
评论
0/150
提交评论