




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、集合与函数概念复习知识要点 1、集合的含义; 2、集合间的基本关系; 3、集合的运算; 4、函数的概念; 5、函数的基本性质; 6、映射的概念。知识梳理1、集合中元素的性质(1确定性:即集合中的元素必须是 的,任何一个对象都能明确判断它“是或者“不是某个集合的元素,二者必居其一。(2互异性:集合中任意两个元素都是 的,换言之,同一个集合里不能重复出现。(3无序性:集合与它的元素的组成方式无关的。知识梳理2、集合的表示方法(1列举法:把集合中的元素 出来,写在 内表示集合的方法。列举法表示集合的特点是清晰、直观。常适用于集合中元素较少时。(2描述法:把集合中的元素的 描述出来,写在 内表示集合的
2、方法。一般形式是x|p,其中竖线前面的x叫做此集合的元素,p指出元素x所具有的公共属性。描述法便于从整体把握一个集合,常适用于集合中元素的公共属性较为明显时。知识梳理(3韦恩图:为了形象的表示集合,有时常用一些封闭的 表示一个集合,这样的图形称为韦恩图,在解题时,利用韦恩图“数和“形结合,使得解答十分直观。3、元素与集合的关系 如果一个元素a是集合A的元素,称元素a 集合A,记为 ,否则称元素a 集合A,记为 。知识梳理4、子集、交集、并集、补集(1子集的定义:对于集合A和B,如果集合A的任意一个元素都是集合B的元素,我们就说集合A 集合B,或集合B 集合A,也可以说集合A是集合B 的子集。记
3、作 或 ,如果集合A不包含于集合B,或集合B不包含集合A,就记作 。 规定:空集是任何集合的子集。 如果A是B的子集,且AB,称集合A是集合B的 ,记作 。知识梳理(2交集的定义:一般地,由属于集合A 属于集合B的元素所组成的集合,叫做A、B的交集。记作 。即AB=x|xA且B。(3并集的定义:一般地,由属于集合A 属于集合B的元素所组成的集合,叫做A、B的并集。记作 。即AB=x|xA或B。(4补集的定义:一般地,设U是一个集合,A是U的一个子集,由U中所有 A的元素组成的集合,叫做U中子集A的补集,记作 。即CUA=X|XU,但XAsss知识梳理5、函数的概念(1函数定义:给定两个非空数集
4、A和B,如果按照某个对应关系f ,对于A中的 , 在集合B中都有 的数 f (x) 与之对应, 那么就称f:AB为集合A到集合B的一个函数,记作y= f (x),xA. 其中,x叫做自变量, X的取值范围A叫做 , 与X的值对应的y值 叫做函数值, 函数值y的集合叫做 .知识梳理(2函数的三要素: , , 。(3区间的概念。(4函数的表示法: , , 。(5两个函数相同必须是它们的 和 分别完全相同(6映射的定义:设A、B是两个非空集合,如果按照某个对应关系f ,对于A中的 , 在集合B中都有 的元素 f (x) 与之对应, 那么就称f:AB为集合A到集合B的一个映射。知识梳理6、函数的单调性
5、(1对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1x2时,如果都有f(x1) f(x2),那么就说f(x)在区间D上是 函数,这个区间D就叫做这个函数的 区间;如果都有f(x1) f(x2),那么就说f(x)在区间D上是 函数,这个区间D就叫做这个函数的 区间;知识梳理(2最大小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足: 对于任意的XI,都有f(x)M( f(x)M ); 存在X0 I,使得y=f(x0)= M.那么,我们称M为函数y=f(x)的最小值最大值).知识梳理(3函数的奇偶性:对于函数f(x),如果对于定义域内任意一个x 都有f(x)= , 那么f(x)就叫做奇函数;如果对于定义域内任意一个x 都有f(x)= ,那么f(x)就叫做偶函数。(4奇函数的图象是关于 对称;偶函数的图象关于 对称。反之也成立。例题分析例5: (1)已知f(x+1)=x2+2x+4,求f(x). (2)已知y=f(x)是一次函数,且有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 诺奖巨磁电阻效应与SXQ理论
- 玫瑰人生温暖世心 中英互译
- 河北省徐水县2025年上半年公开招聘城市协管员试题含答案分析
- 河北省滦平县2025年上半年公开招聘村务工作者试题含答案分析
- 河北省宽城满族自治县2025年上半年事业单位公开遴选试题含答案分析
- 2025版旅游设施融资租赁担保合同范本解析
- 2025年度机关单位炊事员职业培训合同
- 2025版金融资产管理公司并购保密协议模板下载
- 2025年度高端定制化钢结构安装服务合同范本
- 2025年度塑钢窗安装与建筑节能评估服务合同
- (2024年)知识产权全套课件(完整)
- 体育室内课-足球课件
- 阀门试压方案样本
- 专家委员会组建方案
- 急诊科急诊超声检查在腹部外伤中的应用培训
- 速效救心丸培训课件
- 2022年上海市浦东新区6月线下高考二模英语试题(含答案和听力音频与听力稿)
- 妇产科学课件:妊娠合并病毒性肝炎
- 人脸识别系统软件使用手册
- 路基分层-表格-
- 干部年休假审批表
评论
0/150
提交评论