线性代数练习册附答案教学提纲_第1页
线性代数练习册附答案教学提纲_第2页
线性代数练习册附答案教学提纲_第3页
线性代数练习册附答案教学提纲_第4页
线性代数练习册附答案教学提纲_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、线性代数练习册附答案精品资料第1章矩阵习题1 .写出下列从变量x, y到变量xi, yi的线性变换的系数矩阵:XiyiX 0;Xiyixcos xsinysinycos仅供学习与交流,如有侵权请联系网站删除谢谢112 .(通路矩阵)a省两个城市ai,a2和b省三个城市bi,b2,b3的交通联结情况如图所示,每条线上的数字表示联结这两城市的不同通路总数 .试用矩阵形式表示图中城市间的通路情况.i3 .设 A ii4 .计算4 ,求 3AB-2A和 ATB.精品资料211(1)310012ana12b1x(x, y, 1) a12a22 b2 yb1b2c1X12y1y3y13z1 z25.已知两

2、个线性变换X2213y2 2y3 ,y22z1 z3 ,写出它们的矩X34y1y2 5y3y3Z2 3Z3阵表示式,并求从Z1, Z2 , Z3到X1, X2 , X3的线性变换.仅供学习与交流,如有侵权请联系网站删除 谢谢2精品资料6.设 f (x)=a0xm+ aixm'1+- + am, A 是 n阶方阵,定义 f (A)=a0Am+ aiAm-1 + - +amE.,o21.当 f (x)=x2-5x+3, A时,求 f (A).3 37.举出反例说明下列命题是错误的(1)若 A2= O,则 A= O.(2)若 A2= A,则 A=。或 A= E.仅供学习与交流,如有侵权请联系

3、网站删除谢谢117 .设方阵A满足A2-3A-2E=O,证明A及A-2E都可逆,并用A分别表示出 它们的逆矩阵.8 .用初等行变换把下列矩阵化成行最简形矩阵:1(1) A 2123146223131422(2)B1011012134143309.对下列初等变换,写出相应的初等方阵以及B和A之间的关系式101210121002A 2 312 0 332 0 332 =B.2 2r1C3 C11121112111 31、一 1一141 010 .设P1AP A,其中P,A,求A9.110 211 .设 A 0 30 ,矩阵 B 满足 AB=A+2B,求 B.1 02利用初等行变换求A-1.12 .

4、设 A 21253 3精品资料复习题一1 .设A, B, C均为n阶矩阵,且ABC=E,则必有(A) ACB=E; ( B) CBA=E; ( C) BAC=E;(2 .设A0Pi1aiiai2a2ia 22a3ia 32i 00 0 , P2ai3a23, Ba33i 0 00 ia2iaiia3iaiia22ai2a32ai2D) BCA=E.a23ai3a33 ai3仅供学习与交流,如有侵权请联系网站删除 谢谢220 0 ii 0 i1 A) APiP2=B;(B) AP2Pi = B; ( C) PiP2A=B; ( D) P2PiA=B.3 .设A为4阶可逆矩阵,将A的第1列与第4列

5、交换得 B,再把B的第2列与第3列交换得C,设i00000i0 ,则 C-I=(0i00000i0 0 0 IPi0 i 0 0 ,P0 0 i 0i 0 0 0(A) A-iPiP2;(B) PiA-1P2;(C) P2PiA-1;(D) P2A-1Pi.4 .设n阶矩阵A满足A2-3A+2E=O,则下列结论中一定正确的是((A) A-E不可逆;(B) A-2E不可逆;(C) A-3E可逆;(D) A-E和A-2E都可逆.5.设 A=(1,2,3), B=(1,1/2,1/3), C=ATB,求 Cn.6.证明:如果 Ak=O,则(E-A)-1=E+A+A2+-TAk-1, k为正整数.07

6、.设A, B为三阶矩阵,A0,且 A-1BA=6A+BA,求 B.178.设n阶矩阵A及s阶矩阵B都可逆,0ai00000a2009.设X0000an 1an0000(a1a2an0),求 X-1第2章行列式习题1.利用三阶行列式解下列三元线性方程组X1 2x2 X322X1 X2 3X31Xi X2 X303 1 x2 .当X取何值时,4x00.1 0 X3 .求下列排列的逆序数: 315624;(2)13-(2n-1)24 (2n).a3a bc4.证明:a a b a b ca 2ab 3a 2b c5.已知四阶行列式A|中第2列元素依次为1,2,-1,3,它们的余子式的值依次为3,-4

7、,-2,0 ,求 A|.6.计算下列行列式11111111(1)11111111x y x y y x y x01111011110111101x1x21x12x21x3x3a1(5) Dna2,其中 a1a2an0 1an7 .设n阶矩阵A的伴随矩阵为A*,证明:A*|二A|n-1, (n阳.8 .设A, B都是三阶矩阵,A*为A的伴随矩阵,且A|=2, |B|=1,计算卜 2A*B-1.2119.设A210,利用公式求A111复习题二1 .设A, B都是n阶可逆矩阵,其伴随矩阵分别为 A*、B*,证明:(AB)* 二B*A*.2 .设A精品资料3.已知Ai, A2, Bi, B2都是3 1

8、矩阵,设|B|=3,求A+2B|.A=( Ai, A2, Bi,), B=( Ai, A2, B2), A|=2, EBAB4 .设A, B都是n阶方阵,试证:E B E仅供学习与交流,如有侵权请联系网站删除谢谢23精品资料第3章向量空间习题1 .设 o1=(1,-1,1)T, o2=(0,1,2)T, o3=(2,1,3)T,计算 3 a1-2 02+03.2 .设 M=(2,5,1,3)T, a2=(10,1,5,10)T, «3=(4,1,-1,1)T,且 3( M-x)+2( «2+x)=5( o3+x), 求向量x.3 .判别下列向量组的线性相关性:(1) m=(

9、-1,3,1)T, m=(2,-6,-2)T,布(5,4,1)T ;(2) "(2,3,0)T,淬(-1,4,0)T,傻二(0,0,2)T .仅供学习与交流,如有侵权请联系网站删除 谢谢264 .设B=M,佟=相+醴,伊=al+o2+a3,且向量组 M,修,3线性无关,证明向量组 01,区位线性无关.5 .设有两个向量组 队 必,03和伊=al-M+型,印=al+ o2-型,伊=-od+o2+o3,证明这两个向量组等价6 .求向量组 ai=(1,2,-1)T,或=(0,1,3)T,侬=(-2,-4,2)T, o4=(0,3,9)T 的一个极大无关组,并将其余向量用此极大无关组线性表示

10、.精品资料7 .设1, 02,,如是们线性表示,证明:湘8 .设有向量组al, 02,o=a M+b & o5=c o2+d o3(a,组n维向量,已知n维单位坐标向量 * 2,,g能由它 ,on线性无关.03, 陷 05, 其中 01, 0(2, 03线性无关,b, C, d均为不为零的实数),求向量组al,型,M a5的秩.仅供学习与交流,如有侵权请联系网站删除谢谢289.设矩阵 A= (1,2,n), B=(n,n-1,/),求秩 R(ATB).精品资料2111210.设矩阵A11214 八一一一,求A的秩,并写出A的一个最高阶非4622436979零子式.仅供学习与交流,如有侵

11、权请联系网站删除 谢谢3111.已知矩阵A,若A的秩R(A)=2,求参数t的值.12.设 A23502611531944 ,求A的列向量组的秩,并写出它的一个极大35无关组.13.设A为n阶矩阵,E为n阶单位矩阵,证明:如果 A2=A,则R(A)+R(A- E)=n.14.已知向量空间R3的两组基为100-1101 ,牝1,限 1和§1 ,国 1,网 1 ,001011求由基ai, 小海到基凯阿伊的过渡矩阵.精品资料复习题三k、,-,11.设矩阵A111k1111k111,已知A的秩为3,求k的值.1k仅供学习与交流,如有侵权请联系网站删除谢谢402 .设向量组A:犯,循与B: 3,

12、在,若A组线性无关且B组能由A组线 性表示为(伊,,防=(柏,K,其中K为s r矩阵,试证:B组线性无关的充 分必要条件是矩阵K的秩R(K) = r.3 .设有二个n维向量组A: a1,o2, o3; B: a1,醛,o3, o4 ; C: a1,屋,於,庶.若A组和C组都线性无关,而B组线性相关,证明向量组 以限阻a4-a5线性无关.4 .设向量组 A: ai=(1,1,0)T, «2=(1。1)、o3=(0,1,1)t 和 B:由=(-1,1,0)T,由二(1,1,1)T, T=(0,1,-1)T(1)证明:A组和B组都是三维向量空间R3的基;(2)求由A组基到B组基的过渡矩阵;

13、已知向量a在B组基下的坐标为(1,2,-1)T,求a在A组基下的坐标.第4章线性方程组x1 x251.写出方程组2x1 x2 x3 2x4 1 的矩阵表示形式及向量表示形式5x13x22x3 2x432.用克朗姆法则解下列线性方程组bx ay 2ab2cy 3bz bc,其中 abc 0cx az 0xix2x303.问,取何值时,齐次线性方程组x1x2x30有非零解?x12 x2x30x1x2 k x344.设有线性方程组-x1 kx2 x3k2 ,讨论当k为何值时,(1)有唯一解?x1 x2 2x34(2)有无穷多解?(3)无解?Xi8x210x32x405.求齐次线性方程组2x14x25

14、x3x40的一个基础解系3xi8x26x32x403,已知邛,邛,刀3是它的三个解向量,且6 .设四元非齐次线性方程组的系数矩阵的秩为用二(2,3,4,5)t,伊产(1,2,3,4)t,求此方程组的的通解.7 .求下列非齐次线性方程组的通解:x1 x252x1 x2 x3 2x4 15x1 3x2 2x3 2x438, 设有向量组A: a12112 , %1,031及向量33101问向量B能否由向量组A线性表示?9.设“*是非齐次线性方程组AX=b的一个解,&,纪,,是它的导出组的一个基础解系,证明:(1)不0, 2,一线性无关;(2) -,+&, rj*+图,4*+也-r线性

15、无关.复习题四12 121 .设A 0 1 a a ,且方程组AX=8的解空间的维数为2,则a=. 1 a 0 12 .设齐次线性方程组 a1X1+a2X2+anxn=0,且a1,a2,an不全为零,则它的基础解系所含向量个数为3 .设有向量组 兀:a1=(a,2,10)T,醛=(-2,1,5)T, o3=(-1,1,4)T及向量 片(1,b,-1)T,问 a, b为何值时,(1)向量B不能由向量组冗线性表示;(2)向量B能由向量组冗线性表示,且表示式唯一;(3)向量B能由向量组冗线性表示,且表示式不唯一,并求一般表示式.精品资料4 .设四元齐次线性方程组x1 x2 0x2 x3 x4 0x2

16、 x4 0求:(1)方程组(I)与(H)的基础解系;(2)方程组(I )与(H)的公共解.5 .设次E阵A=(吼 /o3,加),其中建,型,加线性无关,a1二2理-a3,向量3=8+02+03+%,求非齐次线性方程组 Ax= B的通解.仅供学习与交流,如有侵权请联系网站删除 谢谢41精品资料仅供学习与交流,如有侵权请联系网站删除谢谢49aibici6.设a2,b2,c2,证明三直线a3b3c311 : a1xb1y c1012 : a2x2b?yc20aiI3:a3xb3yc30相交于一点的充分必要条件是向量组b:0, i 1,2,3,线性无关,且向量组,线性相关.第5章 矩阵的特征值和特征向

17、量1 .已知向量od=(1,-1,1)T,试求两个向量02, 03,使al,必,0(3为R 3的一组正交2 .设A, B都是n阶正交矩阵,证明 AB也是正交矩阵.3 .设A是n阶正交矩阵,且|A|=-1,证明:-1是A的一个特征值.24.求矩阵511233 的特征值和特征向量025.已知三阶矩阵A的特征值为1,2,3 ,计算行列式|A3-5 A2+7E|.6.设矩阵A5 000 y 0相似,求x, y ;并求一个正交10 04矩阵 P,使 P-1AP=A.7.将下列对称矩阵相似对角化:22 0(1) 2 1202 0400(2) 0310138 .设人是可逆矩阵A的特征值,证明:囚是A*的特征化 (2)当1,-2,3是3阶矩阵A的特征值时,求A*的特征值.9 .设三阶实对称矩阵A的特征值为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论