面心立方金属中非螺型晶格位错与共格孪晶界的相互作用_第1页
面心立方金属中非螺型晶格位错与共格孪晶界的相互作用_第2页
面心立方金属中非螺型晶格位错与共格孪晶界的相互作用_第3页
面心立方金属中非螺型晶格位错与共格孪晶界的相互作用_第4页
面心立方金属中非螺型晶格位错与共格孪晶界的相互作用_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、面心立方金属中非螺型晶格位错与共格挛晶界的相互作用-Usher译摘要在之前发表的Jin ZH, Gumbsch P, Ma E, Albe K, Lu K, Hahn H, et al. Scripta Mater 2006;54:1163及章中,通过分子动力学模拟,已经对三种面心立方(fcc)金属Cu, Ni和Al中螺型位错和共格孚晶界的相互作用做了研究。为了完备之前的结果, 在本篇文章中,我们考虑了纯应力驱动下 60°非螺型晶格位错和CTB的相互作 用。依据材料种类和施加的应变,我们观察到了与品界作用的不同的滑移方式。如果一个600位错在外力驱动下进入CTB,它会分解成不同的不全

2、位错进入李品 和李晶界。如果滑移传递不完全,就好在 CTB上留下一个不动位错。这种相互 作用的机理是由与材料有关的能量势垒控制的, 这些能量势垒在晶格位错撞击晶 界的地方用来形成肖克利不全位错。1 .简介晶体材料的强度和延展性取决于由晶格位错的运动相互作用 和增殖形成的滑移和塑性流动。虽然已经确定,多晶中的滑移主要是由一般的晶界和特殊品 界如孚晶界影响,但是目前位错和品界的相互作用还有很多方面不是非常清楚 2-9。最近,实验结果表明,低固有堆叠层错能的材料,如Cu10-12和不锈钢13,它们内部大量的纳米级的李晶在提手强度的同时,提高其材料的延展性。 有人提出,在这些试样中,共格孚晶界(CTB

3、s)提供临界能量势垒,阻止了从 一个李晶到其它孚晶的滑移传递,这导致产生了高屈服应力值。我们知道,可以通过联合计算仿真实验 以及以滑移传递14-17交滑移18-20和变形李晶7,21-23形式的连续介质理论提升对位错一李晶界相互作用 的进一步认识。另外,已经基于分子动力学(MD)仿真手段,研究了螺型位错 (位错的柏氏矢量与位错线平行)与共格孚晶界的相互作用1。在原子水平上,展示了两种相互作用形式。当一个螺型位错从李晶界的一边进入共格孚晶界时, 会发生:(1)切过李晶界,进入李品;(2)在李晶界面上分解为两个肖克利不全 位错,在CTB上沿相反的方向传播。在Al中只出现地二种形式的机制,相比之 下

4、,Cu和Ni材料中两种机制都有可能产生。在倾斜晶界的Al中,多尺度螺型位错和CTBs的相互作用的模拟也能得到相似结论24。Path技术和MD模拟联合用于Cu和Al,可以用于准确测定其的相互作用力 25,26。结果显示,弹性各向异性性质和位错场内的 CTB响应是位错和晶界相 互作用力的核心。在之前的模拟27,28和试验21-23,29表明,由于 长程斥力的 作用,当两个分离的不全位错向发射到CTB时,它们会重组成为一个全位错。然而在Al中,主要是短程作用力,使得滑移被CTB自发的吸收,产生沿着晶界 的交滑移(孚晶形核)1,25。当品格位错不是纯螺型位错时,模拟会变得更加复杂。如之前所提到的,对

5、非螺型位错而言,在CTB上会出现许多可能的反应30。例如,一个60o全位错 (位错的柏氏矢量相对位错线倾斜 60。),如果没有反弹回到初始晶粒就可能直接 穿过晶界进入相邻李晶同时沿李晶界发射一个额外的部分位错7。然而,具有争议的是,也有其它可能,因为李晶/孚晶界可能充当不全位错和全位错源31-34。另外,人们认为,在几种纳米结构中例如Cu, Ni, Al,位错滑移是通过李晶发射和/或形变孚晶传递的9,35 - 40 o特别是,人们会提问一下有趣的问 题,例如:滑移传递能只有部分穿过李晶界么?如果回答可以,他还想知道在变形过程中,剩余部分柏氏矢量是否能形成不动晶界位错,在什么条件下会形成这 种不

6、动位错锁和/或非锁位错。为了释放应变能,有利方式是在一个晶粒中沿外滑移系反射入射位错进入相 邻晶粒。然而,实际上向外滑移的结果依赖很多因素,如柏氏矢量,切应力分量, 品界结构,晶粒尺寸和是否存在其它位错。为了详细具体机制,在这个研究中, 我们分析了不同fcc金属中60。完全品格位错和共格孚晶界的相互作用。2 .双晶体的MD模拟能充分说明位错-晶界的相互作用细节27,28,41-44。在我 们的模拟中MD几何模型(Fig.1)基于fcc品格基底-李晶取向关系,本质上时 与参考文献【1】相同的。在fcc金属中,1/2<1 1 0>型完全晶格位错是由两个1/6<1 1 2>型

7、肖克利不全位错组成。例如螺型位错BA(力依据BA=B廿4分解,位错头 (八)和位错尾(B都是30。不全混合位错,具有相等长度,1/2bs,方向相反、6(bs= a0 ,肖克利不全位错的柏氏矢量用长度测量)。 6Fig.1.模才fcc金属中全位错和共格挛晶界相互作用的挛晶双晶体示意结构。在研究中,考虑滑移面(K2)上两个60o位错DA和AD ,他们的柏氏矢量相反, 均相对位错线倾斜 60o(, 平行于Z轴方向)。对比起见,也画出了螺型位错 BA和AB (查看参考文献1)。在(1 0 1)剪切面施加了一个为位错提供恒定拽力的均匀剪切应变(eappl,使位错在X方向运动。有关拽力,晶体取向和位错响应

8、的详细信息可以在附录里面查找。在这个研究中,我们考虑了名为 DH力柏氏矢量为b=- 1 0 1刖AD(力柏 2氏矢量为b=1? 0 1的两个非螺型位错。根据定义,DA和AD都是60°完全混 2合位错。在 M D模拟中对DA依据11 0 1=)1 1 2】+12 1 11分解,或 266DA=Dt+4,科(1/62 -1 1)是肖克利混合不全位错头(30°), D 丫(1/61 1 2) 是纯边位错尾(90°)。通常,两个肖克利不全位错是被与材料有关的堆叠层错带 和滑移宽度分开的。柏氏矢量紧紧从 DA反向成AD,本质上认为它们是同样的 品格位错。但是一旦一个位错向相

9、反方向移动,考虑到一个是位错头一个是位错 尾,两个肖克利不全位错也要反向,这使得它们的性质大不一样了。尤其, DA 的肖克利不全位错头是30°沸,而AD的肖克利不全位错头是90° D T (参看附录 Fig.A2)。这种原子尺度的差异在位错冲击 CTB时可能导致不同的位错响应,这 将在下一段讨论。我们的模拟中所有位错都是直线并且在与位错线同向的周期边界条件下 “无限”长。同理,在同一方向上,字晶面也是无限的。通常,位错是弯曲的且 取向任意方向的。相互作用包括短弯曲位错段,并且相关的肖克利不全位错可能 显示所有可能特性。在我们的模拟中忽略曲率效应的影响,因为依据弹性位错理论,

10、位错段可以看作直线处理4,并且对于肖克利不全位错其它可能结合的情 况下的相互作用本质上和我们这里要讨论的是一致的。为了阐明材料对位错-CTB相互作用的依赖性,我们选择了三种不同材料 模型fcc金属Al, Cu和Ni,它们的堆叠层错能和弹性性质是不同的。在我们的 模拟中,滑移总被看作是应力驱动的。所有的模拟在0K温度下开始,温度函数是不起重要作用的。应变率效应是不相干的。有关晶体学,汤普森符合位错响应, 驱动力和MD模拟的相细信息可以在附录中看到。3 .结果在我们的位错和CTB的相互作用的MD模拟中,滑移仍然是守恒的。为 使位错撞击CTB,外加拽力要足够大能用于克服 CTB对位错的斥力1,25。

11、因 此位错向CTB运动受到限制,两个分离的位错在晶界上会重新结合成为一个全 位错。为了预测滑移传递通过 CTB,把K1和K3面作为一个60°入射位错的外 滑移面(Fig.1)。根据李晶的对称性,有关柏氏矢量或 DA从K2到K3完全传 递的相应位错响应被描述为(参看Fig.2和Fig.A2):DA A'D'+C 6 或1 1 0 1 1 - 1 1 0 1 T 1 1 1 212 22同样,对AD可写作:AD D'A'+ 心 或1七1 0也就是,两种情况下都需要发射一个沿着李晶面( K1)的90。形核李晶不全位错(C6或8C)。另外依据李晶的对称性,位错

12、头和位错尾在穿过晶界后交换顺 序。Fig.2.柏氏矢量DA完全穿过CTB。只有柏氏矢量的边缘部分(用不同颜色显示)被画出, 因为柏氏矢量的纯螺型部分穿过CTB是不变的。对于 AD,这幅图中的矢量是相反的。(为了解释给这幅图涂色的参考文献,我们在网站上提到了这篇文章的读者)ABAy - yuj ,a. w . a T"DA ( £ ap=3.5%)AD ( £ ap=3.5%)Fig.3.MD快照说明Cu中入射60o位错和CTB的不同相互作用。观察角沿X-Y 平面的法线(cg.Fig.1)。原子的颜色依据每个原子的势能校准(在Fig4和Fig.5中 也如此)。为了激

13、活位错响应(附录中cf.Fig.A2),要求eapp>3%£者oxy1.2GPa Wz0.7GPa(附录 A 中 cg.Eq.(A2)这种情况的确在Cu中对DA位错出现。如Fig.3A中的MD快照所示, 观察到位错响应确实是Fig.2的方式。分解的位错在CTB上重新结合成为一个 全位错然后切过晶界分裂成为三个肖克利不全位错。其中两个位错沿李晶滑移面 (K3)滑移,它们原属于同一个全位错(A'D'),第三个位错是形核李晶不全位错(C, 沿着李晶面滑移。这种现象在早期实验中也观察的到14-17,21-23。然而,依据Eq.(1b),这种现象对AD位错并没有出现。对比

14、DA,在Cu中 位错AD只有部分穿过CTB (Fig. 3B)0这种情况下,在CTB上释放一个30°肖 克利不全位错头。继续进行时,留下一个长的堆叠层错带。剩余不全位错被钉在 并且优先留在晶界上,根据李晶的对称性,形成一个错配为1/91 1 1的Hirth固定(1/30 0 1不动位错。这个固定位错形式是一排的“额外”原子或者“嵌入 原子”,因此也被称为“ i-type”字晶固定,或者“ i-lock”。在位错上施加的拽力由Eq.(A2)给定。在Cu中为了激发可观察的位错响应, 在两种情况下施加的剪切应变是等量级的,即 eap阱3%换成分切应力,相应 值是 Oxy = 1.2GPa

15、Wz = 0.7GPa。其它材料像Al和Ni ,我们的模拟中还观察到其它几种位错响应。依据柏氏 矢量和施加应变,CTB可能允许完全滑移传递,也可能充当一个位错汇或者位错Fig.4展示了 Al中的观察,入射位错DA不能完全切过 CTB而是在1.5%< £ app<3.5%时,沿着CTB释放一个30°形核孚品位错(心)。在CTB的剩 余部分形成一个Frank不动位错(DA, 1/31 1 1)。在其他模拟32中也出现过 类似位错响应。Fig.4B显示,在施加一个相当大的应变e applM%寸,位错切过并进入CTB中,这与Cu中DA位错下的观察时一致的。另外,在 Fi

16、g.4C中,入 射位错AD沿CTB释放两个形核孚品位错,并没有切过 CTBo这两个形核孚晶 位错(A6和 心)具有不同的特征,即分别是30°和90°它们相互排斥,向相 反的方向滑移。CTB中留下的不动位错是另外的全位错(CD/BA ,1/2-1 -1 0)。在Ni中也观察到了 CTB充当位错汇或位错阱的作用(Fig.5)。eappld.5% 时,入射位错DA沿着CT邮放单个形核孚品位错却没有穿过 CTB这与Al是相 似的(Fig.4A)。施加大的应变(4%时,释放两个不全位错:一个沿 CTB的30° 形核李晶不全位错和一个进入相邻李晶晶格的90°不全位错

17、。留在品界的不动位错形成另外一类柏氏矢量 10 0 11 O1 1 11的李晶锁。这类锁的特征是一 618?排“丢失”原子或者“空位”,可以叫做“ v-l°ck ”。对于入射位错 AD激活位 错响应要求eap阱2.5 %这与Fig.3B中Cu在晶界处留下“ i-l°ck ” 一样。DA J 3%)DA仁嬴-4粉D £噎产Fig.4.在Al中观察到的入射60o位错和CTB的相互作用。为了激活这种相互作 用,要求(A) eapp3%g是 oxy0.24GPa cyz -0.14GPa (B) e appl4%E是 xy 0.97GPa(yz0.56GPa (C) e

18、ap32%E是 oxy -0.48GPa oyz0.27GPaAD ( £ app2.5%)Fig.5.Ni中观察到的60o入射位错和CTB的相互作用。为了激活这种相互作用, 要求(A) eapp1.5%£是 四 0.0.98GPa 加 0.57GPa (B) e app4%E是 四 2.62GPa yz.-1.51GPa (C) e app12%E是 oxy1.63GPa oyz -0.94GPa4.讨论我们在MD中观察到的现象表明,除了完全滑移传递,外加应变驱动的晶 格位错进入CTB还有其它几种路径可以选择。结果是可能产生滑动位错和不动位 错,位错选择的路径依赖于位错和

19、品界的局部特性。换句话说,就是我们的实验结果表明为了带走存储在晶格中的弹性能,必需在局部应用一般 Schmid定律去 控制位错响应4,5。与CTB相互作用的位错不能简单看作是伏尔泰(Volterra )位错。目前 还没有连续弹性理论能有效预测在给定外在条件下位错选择的路径。 像参考文献 1中提到的,不同相互作用行为可能依赖形核不全位错的材料固有的能量势垒。为了理解位错和CTB的相互作用机制,我们在两者作用的同时监测位移场 的变化。Fig.6A显示,一个完全受限的位错定位在 Cu中CTB的左侧。很明显, 重要的原子流出现在位错核心区。位错位移场(或流场)显示两个不全位错的核心共存但作用方式完全不

20、同。一个核心定位在CTB右侧相邻李晶晶格的滑移面上,另外一个沿着原李晶滑移面定位。在Cu中两个核心相互协作发优先沿两个滑移面发射不全位错(Fig.3A)。在其他金属如Ni中(Fig.6B),只有一个核心优 先作用沿CTB发射一个30°形核孚品位错(cf.Fig.4A 和5A)。Fig.6 所示两个受限位错本质是一样的。流场与 CTB的作用不同的原因可 能是堆叠层错能不同的缘故。使 Ni中两个外来不全位错分开的固有堆叠层错 (ISF)能是Cu中的5倍。如果ISF能(第)很高,就会在位错核心诱导一对不 全位错形成一个全位错。已经参考文献1中的假设,引进两个无量纲参数描述 不全位错重新形核

21、:R=jUS二刍在滑移面法向b %sR' = UTJ12在滑移面内bs笫s是不稳定堆叠层错能-在一个完美品格产生一个固有稳定堆叠层错的能 力势垒45; m是在原先李晶面上产生一个李晶缺陷的能力势垒;以是1 1 1<1-2 1>剪切面内的剪切模量。不稳定的层错能是非常重要的,因为形成固有 堆叠层错(或者李晶缺陷)与形核肖克利不全位错不论在结构还是能量上都是紧 密相关的1,45,46 。Fig.6. Cu 和Ni中非螺型位错包含的晶面间弛豫流动。 黑线表示滑移面。转动这张纸从低 视角观察可以容易的看到位错。 在£ appl3.5%两个位错都在 CTB处受到限制。箭头表

22、示x-y 平面间隔0.4ps的原子的位移 (8 r= 8 xi+ 8 yi)。图示矢量是乘以乘子 5后的位移矢量。Tablel列出了计算出的三种材料的堆叠层错能和无量纲阻力参数。Cu和Ni中R的值几乎相等。相对R, Cu的R'是89% Ni是74% Al的R= 0.005 , R是 负值。为了合理使用三种金属用的原子势48,49,引入了基于密度函数理论50 计算获得的数据。我们的结果表明,考虑参数R三种材料结果都趋向基于abinitio 解释的预测结果。与螺旋位错1 一样,这些参数解释非螺型位错与晶界 的相互作用是可靠的。Table 1EAM和DFT (密度函数理论)50的堆叠层错能和

23、无量纲阻力参数的比较m1 rM>(CrPa|y* (mJ mVui H1J m ?l支rr (mJ m )R*A1EAM34.0527.91466&TOQ.005-0_017DFT4.05斗产U2140ODD7-007CuEAMb3制46.6制,51S5Iti7业期30.030DFT3种5收w3614?仇期0.0 |RNiFAM13.5375.6126他和4a® 2DFT支必74.IB2Ml»600120.005参数R依据Eq.(2)计算。剪切模量由式 巧1/3(C11-C22+C44)给出,C11 , C22, C44是弹性常数a嵌入原子法(EAM) 48得

24、到的原子势。b嵌入原子法(refitted ) 1, 49得到的原子势。c从参考文学3查得的数据。如果拽力足够大能克服三个能量势垒,一个60°全位错离散为三个肖克利不全位错(Fig.2 )穿过CTB根据Eq. (A2)(见附录),形成一个90°形核李品位 错的拽力分量是形成一个进入相邻李晶格90°肖克利不全位错需要拽力的3.7倍。因此,高的R的值利于抵制强烈的原子沿孚晶路径流动,因此可能形成两 个纯刃形的不全位错。在以上条件下我们的结果表明铜中的DA位错实际上能够完全穿过CTBNi中同样的位错(DA的,相对低的R'可能沿孚晶路径上增强弛豫现象, 优先发射一

25、个30o形核李晶不全位错(Fig.5A)。当拽力足够大能形成一个90o不 全位错进入李晶格时,在晶界上就留下了一个“ V-lock "(Fig.5B )。对Al而言,负的R'51表明沿CTB的弛豫占绝对主要地位。基于这个原因, Al中的CTB对非螺型位错(Fig.4A和C)和螺型位错都起到一个有效的阱的作用 1,25。另一方面,Al中的晶格位错表现出最短的滑移宽度。如果一个位错在 外力下高速冲击CTB强烈的运动效果能有助于它完全切过晶界,如观察到的DA(Fig.4B )。对于铜中的位错DA也得到相似结论。在这个实验中,首先要形成一个不依 赖沿晶界充足弛豫30°不全头

26、位错。当不全位错滑移时,就在晶界处形成一个“i-lock "(Fig.3B和5C)。为了形成这个“ i-lock ”,由剪切应变分量提供的复 合压力效应是非常重要的,因为复合压力效应可能会系统的改变相对形核势垒。我们独立的计算结果表明,Cu和Ni中沿滑移面法相的压缩(膨胀)会提高 (降低)能量势垒。依据 Eq. (A2), eap阳为3%寸,K1滑移面上应变的分量 受压(£ ylyl)约为1%在滑移面K3上的应变分量受拉(£ y3y3)约为1.5 %对于 DA位错,形成一个进入相邻李晶的肖克利头位错,能量势垒降低10喔U20%在李晶面上形成一个形核孚品位错,能量势

27、垒会增加大约同样大小的值,这有助于 完全滑移传递(Fig.3A)或者90°不全位错进入李晶(Fig.5B)。而位错AD则呈相反的趋势,因为对 AD位错拽力的方向与DA位错拽力方向 相反。e appt大,孚晶格中能量势垒也增大,而沿CTB方向能量势垒减小,这表明,“i-lock ”不论在何处形成,在CTB上都会成为不动位错。均匀的拉伸应 变,在我们MD奠拟中约为2%有助于释放“i-lock ”。另一方面,同一个滑移 面内外力驱动的第二个 AD位错也能通过发射一个90o不全位错进入李品格同时 沿CTB隹走一个形核孚品位错的形式释放掉“i-lock ”;然而,如果释放一个30。不全位错进入

28、挛晶格的话,会在CTB处留下一个新的“ i-lock ”。鸣谢非常感谢S. Mahajan批阅手稿并提出宝贵建议。我们的这个研究由 Deutsche Forschungsgemeinschaft(DFG) 和 Forschungszentrum Karlsruhe (FZK)提供支持。附录A.1. 李晶晶体学不变(1 1 1 )面的完全李晶格被共格孚晶界(K1或CTB分开。李晶中的 (-1-1 1 ),面(K3)是基底晶格(-1 -1 1) 面(K2)的镜面反射面(Fig.A1 )。两 个滑移面试互为共腕的,绕Z轴旋转180o后重合。基底(hkl )到孚晶(h'k'l'

29、) 品格取向的转换只能写47:%'k' =T其中T=2r-i1 2、-1 22 0>(A1)DlaktcorEdg& fixedFig.AI M叶晶单元A.2.汤普森符合表示位错响应完全品格位错的柏氏矢量从基底晶格到李晶格会发生改变(查看Fig.2 ) o我们采用汤普森三角来表示滑移面(K1, K2?口K3)上的位错响应路径。两个三角对李 晶面(K1)相互共腕。由于李晶的对称性,肖克利不全位错和全位错的柏氏矢量 都要反转180o穿过CTB结果是,当两个两个肖克利不全位错切过 CTB寸,头位错 和尾位错交换顺序。Matrix lattice (K?)Fig.2.汤普

30、森符合表示的位错响应A.3.施加剪切应变和拽力施加到位错上的拽力是由施加在整个 MD单元上沿入射位错的柏氏矢量方向(Fig.1 )单一均匀常数剪应变(&ppi)实现的。依据工程应变,在滑移面 K1和K3上的剪应力分量写作:° 00yzI I0I< * xy ) xi-yi-z'242 sxy92V2£xy901一Eyz3272翱z37 Sxy<9-2872Exy812872Sxy8107Syz9-472Eyz917Sxy、81A(2)对螺型位错yz appi一 ?侬=0 0对60o位错帮=互印ppl ,2x3-y3-z&y =-承ppl。

31、施加工程剪2应变值有两种项,oxy =氏xy , cyz =收yz ,其中四是(-1 -1 1 ) 1 -1 0和(-1 -1 1 )1 1 2剪切面的剪切模量(Table 1)。我们的计算中忽略了卜随 邮pi而变化的 非线性影响和随电ppi增加而其重要作用的各向异性效应。作用在入射单位位错上的拽力由下式给出4:f = 1 为ppb(A3)相当与Peach-Koehle被力,f= cappib 。对不全位错,针对螺型部分与刃型部分 的拽力分量采用与Eq.(A2)相似的形式。A.4. MD模拟为了模拟位错与CTB的相互作用,在MD单元的Z轴方向施加了周期边界条件(Fig.AI),周期长度为lz=

32、3 V2 a。,其中a。是晶格常数。沿其它两个方向,lx=50 V6 a。,2ly=40 33 a。MD包括了 15000g自由原子。“位错源”可以移动,但是只形核入射位错1。在双晶体中位错与CTB的相互作用在由3Pp指定的独立 的模拟中被监测。大部分的应变能通过位错移动放热的的形式被释放掉,这会使系统运动温度提高几个Ko MD中的时间步长设为2fs0我们的模拟用到了由参考 文献48,49给出的EAM类型的原子间势。参考文献1 Jin ZH, Gumbsch P, Ma E, Albe K, Lu K, Hahn H, et al. Scripta Mater 2006;54:1163.2 H

33、all EO. Proc Phys Soc London B 1951;64:747.3 Petch NJ. J Iron Steel Inst 1953;174:25.4 Hirth JP, Lothe J. Theory of dislocations. New York: Wiley; 1982.5 Cottrell AH. Dislocations and plastic flow in crystals. Oxford University Press; 1953.6 Gleiter H. Prog Mater Sci 1989;33:223.7 Christian JW, Maha

34、jan S. Prog Mater Sci 1995;39:1.8 Randle V. Acta Mater 2001;52:4067.9 Meyers MA, Mishra A, Benson DJ. Prog Mater Sci 2006;51:427.10 Lu L, Shen YF, Chen XH, Qian LH, Lu K. Science 2004;304:422.11 Shen YF, Lu L, Lu QH, Jin ZH, Lu K. Scripta Mater 2005;52:989.12 Lu L, Schwaiger R, Shan ZW, Dao M, Lu K,

35、 Suresh S. Acta Mater 2005;53:2169.13 Zhang X, Misra A, Wang H, Nastasi M, Embury JD, Mitchell TE, et al. Appl Phys Lett 2004;84:1096.14 Shen 乙 Wagoner RH, Clark WAT. Scripta Metall 1986;20:921.15 Shen 乙 Wagoner RH, Clark WAT. Acta Metall 1988;36:3231.16 Lee TC, Robertson IM, Birnbaum HK. Scripta Me

36、tall 1989;23:799.17 Lee TC, Robertson IM, Birnbaum HK. Philos Mag 1990;62:131.18 Fleischer RL. Acta Metall 1959;7:134.19 Escaig B. J Phys (Paris) 1968;29:225.20 Puschl W. Prog Mater Sci 2002;47:415.21 Mahajan S, Barry E, Eyre BL. Philos Mag 1970;21:43.22 Mahajan S, Chin GY. Acta Metall 1973;21:173.2

37、3 Remy L. Acta Metall 1977;25:711.24 Dewald MP, Curtin WA. Philos Mag 2007;87:4615.25 Chen ZM, Jin ZH, Gao HJ. Phys Rev B 2007;75:212204.26 Zhu T, Li J, Samanta A, Kim HG, Suresh S. Proc Natl Acad Sci USA 2007;104:3031.27 Pestman BJ, De Hosson JThM, Vitek V. Scripta Metall 1989;23: 1431.28 Pestman B

38、J, De Hosson JThM, Vitek V. Philos Mag A 1991;64:951.29 Sennour M, Lartigue-Korinek S, Champion Y, Hy - tch MJ. Philos Mag 2007;87:1465.30 Sutton AP, Balluffi RW. Interfaces in crystalline materials. Oxford University Press; 1995.31 Robertson IM, Beaudoin A, Al-Fadhalah K, Li CM, Robach J, Wirth BD, et al. Mater Sci Eng A 2005;400401:245.32 Foiles SM, Medlin DL. Mater Sci Eng A 2001;319321:102.33 Wolf D, Yamakov V, Phillpot SR, Mukherjee A, Gleiter H. ActaMater 2005;53:1.34 Afanasyev KA, Sansoz F. Nanolet

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论