四电压比较器LM339的常用方法_第1页
四电压比较器LM339的常用方法_第2页
四电压比较器LM339的常用方法_第3页
四电压比较器LM339的常用方法_第4页
四电压比较器LM339的常用方法_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、四电压比较器LM339的常用方法LM33叫成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV 2)电源电压范围宽,单电源为2-36V,双电源电压为土1V-土18V; 3)对比较信号源的内 阻限制较宽;4)共模范围很大,为0- (Ucc-1.5V) Vo; 5)差动输入电压范围较大,大到可以等丁 电源电压;6)输出端电位可灵活方便地选用。LM339成块采用C-14型封装,图1为外型及管脚排列图。由丁LM339用灵活,应用广泛,所以 世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数 基本一致,可互换使用。G

2、ND冏冏同回L2J LU UJ L5J LL| LZ+Vcc图1LM339H似丁增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个 称为同相输入端,用“ +”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任 意一个输入端加一个固定电压做参考电压(也称为门限电平它可选择LM339俞入共模范围的任何一点),另一端加一个待比较的信号电压。当“ +”端电压高丁 “ - ”端时,输出管截止,相当丁输 出端开路。当“-”端电压高丁 “ +”端时,输出管饱和,相当丁输出端接低电位。两个输入端电压 差别大丁10m姻能确保输出能从一种状态可靠地转换到另一种状态,因此,把L

3、M339用在弱信号检测等场合是比较理想的。LM339的输出端相当丁一只不接集电极电阻的晶体三极管,在使用时输出 端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端 高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决丁上拉电阻与负载的值。 另外,各比较器的输出端允许连接在一起使用。l、单限比较器电路图1a给出了一个基本单限比较器。输入信号Uin,即待比较电压,它加到同相输入端,在反相输入 端接一个参考电压(门限电平)Ur。当输入电压UinUr时,输出为高电平UO*图1b为其传输特性。图3为某仪器中过热检测保护电路。它用单电源供电,1/4LM3

4、39的反相输入端加一个固定的参考电压,它的值取决丁R1丁R2 U=R2/ (R1+R2 *Ug同相端的电压就等丁热敏元件Rt的电压降。 当机内温度为设定值以下时,“ +”端电压大丁 “-”端电压,Uo为高电位。当温度上升为设定值以 上时,“-”端电压大丁 “ +”端,比较器反转,Uo输出为零电位,使保护电路动作,调节R1的 值可以改变门限电压,既设定温度值的大小。2、迟滞比较器迟滞比较器乂可理解为加正反馈的单限比较器。前面介绍的单限比较器,如果输入信号Uin在门限值附近有微小的干扰,则输出电压就会产生相应的抖动(起伏)。在电路中引入正反馈可 以克服这一缺点图1a给出了一个迟滞比较器,人们所熟悉

5、的“史密特”电路即是有迟滞的比较器。图1b为迟不难看出,当输出状态一旦转换后,只要在跳变电压值附近的干扰不超过U之值,输出电压的值就将是稳定的。但随之而来的是分辨率降低。因为对迟滞比较器来说,它不能分辨差别小丁 U的两个输入电压值。迟滞比较器加有正反馈可以加快比较器的响应速度,这是它的一个优 点。除此之外,由丁迟滞比较器加的正反馈很强,远比电路中的寄生耦合强得多,故迟滞比较 器还可免除由丁电路寄生耦合而产生的自激振荡。如果需要将一个跳变点固定在某一个参考电压值上,可在正反馈电路中接入一个非线性元件,如晶体二极管,利用二极管的单向导电性,便可实现上述要求。图| +VccR上挂Uir &I

6、 UOGV图2图3为某电磁炉电路中电网过电压检测电路部分。电网电压正常时,U5=2.8V,输出开路,过电压保护电路不工作,作为正反馈的射极跟随器电压大丁242V时,U42.8V,比较器翻转,输出为0V, BG1截止,U5的电压就完全决定丁R1与R2的分压值,为2.7V,促使U4更大丁U5,这就使翻转后的状态极为稳定,避免了过压点附 近由丁电网电压很小的波动而引起的不稳定的现象。由丁制造了一定的回差(迟滞),在过电2为其原理图。1/4LM339的U42.8V,BG1是导通的。当电网压保护后,电网电压要降到242-5=237V时,U4U3电磁炉才乂开始工作。这正是我们所期望的3、双限比较器(窗口比

7、较器)图1电路由两个LM339组成一个窗口比较器。当被比较的信号电压Uin位丁门限电压之间时(U1Uin Uk或UinU1时, 运放A1输 出高电平; 当Ui U2则当输入电压Ui越出U2, U1区间范围时,LED点亮,这便是一个 电压双限指示器。若选择U2 U1,则当输入电压在U2, U1区间范围时,LED点亮,这是一个“窗 口”电压指示器。此电路与各类传感器配合使用,稍加变通,便可用丁各种物理量的双限检测、短路、 断路报警等。6、单稳态触发器见附图5此电路可用在一些自动控制系统中 二电阻R1、R2组成分压电路,为运放A1负输入端提供偏置电压U1,作为比较电压基准 顼态时,电容C1充电完毕,

8、运放A1正输入端电压U2等丁电源电压V+,故A1输出高电平当输入电压Ui变为低电平时, 二极管D1导通,电容C1通过D1迅速放电,使U2突然降至地电平,此时因为U1U2故运放A1输出低电平二当输入电压变高时,二极管D1截止,电源电压R3给电容C1充 电,当C1上充电电压大丁U1时,既U2U1 A1输出乂变为高电平,从而结束了一次单 稳触发顼然,提高U1或增大R2、C1的数值,都会使单稳延时时间增长,反之则缩短卫图5图6如果将二极管D1去掉,贝U此电路具有加电延时功能 二刚加电时,U1U2运放A1输出低电平,随着电容C1不断充电,U2不断升高,当U五U1时,A1输出才变为高电平 参考图6电流也放

9、大器不受基本增益带宽积的限制,随着信号幅度的增加,带宽的损失非常 小。因为可以在最小失真的条件下对大信号进行调节,这些放大器在非常高的频率下 通常都具有优异的线性度。而电压反馈放大器的带宽随着增益的增加降低,电流反馈 放大器在很宽的增益范围上维持其大部分带宽不变。正因为如此,准确地说, 电流为馈运放 没有增益带宽积的限制。当然,电流反馈 运放 也不是无限快,其压摆率(Slew Rate)不受内部偏置电流的限制,但受三极管本身的速 度限制。对给定的偏置电流,这就容许不用通常可能影响稳定性的正反馈或其方法来 获得较大的压摆率。那么如何构建这些电路呢?电流反馈 昼破具有一个与差分对相对的输入缓冲器,

10、该输 入缓冲器大多数情况下常常是射极跟随器或其它非常类似的电路。正相输入端具有高 阻抗,而缓冲器的输出,即放大器的反相输入具有低阻抗。相比之下,电压反馈放大 器的输入都是高阻。电流反馈运放的输出是电压,并且它与流出或流入运放的反相输入端的电流有关,这由称为互阻抗(transimpedance)的复杂函数Z(s)来表示(图1)。在直流时,互阻抗是一 个非常大的数,并且像电压反馈运放一样,它随着频率的增加具有单极点滚降特性。电流反馈运放灵活性的关键之一是具有可调节的带宽和可调节的稳定性。因为反馈电 阻的数值实际上改变放大器的交流环路的动态特性,所以能够影响带宽和稳定性两个 方面。加之具有非常高的压

11、摆率和基丁反馈电阻的可调节带宽,你可以获得与器件的 小信号带宽非常接近的大信号带宽。在甚至更好的情况下,该带宽在很宽的增益范围 内大部分都维持不变。而因为具有固有的线性度,你也可以在高频大信号时获得较低 的失真。如何发现最佳的反馈电阻RF图1:具有Z(s)和反馈电阻的电路示意图U1U2OUQ巍志(MHz)图2:能够体现LMH6714特色的不同RF条件下的频率响应由丁放大器的交流特性部分地取决丁反馈电阻,这就让我们能够针对每一个特定的应 用量身定制”放大器。降低反馈电阻的数值将提升环路增益。为了保持稳定性和最大的带宽,在低增益时,反馈电阻要设置为较高的数值;随着增益的上升,环路增益自然 降低。如

12、果需要高的增益,可以利用较小的反馈电阻来部分地恢复环路增益。在图2中你可以看到随着你改变反馈电阻带宽所发生的变化。在右手曲线的远处,反馈电阻RF等丁147Q,你可以看到频率响应具有相当大的峰值。该曲线也具有最高的带宽。减小该电阻到远远低丁这个147Q ,会导致你的脉冲响应出现振铃, 如果再进一步减小 该电阻,实际上就会发生振荡。RF等丁300Q的曲线具有优异的平坦度和增益,并仍然具有与峰值频率响应可比的良好带宽。所以,我们不必牺牲太多的带宽就已经获得了很高的稳定性。利用600Q的反馈电阻,你就能调节回你的频率响应。例如,如果一个应用仅仅需要5060MHz的带宽,在该频段内的任何信号都会对噪声有

13、所贡献,你可以利用反馈电阻来调节你的器件的频率 响应。在如此有限的带宽内,利用如此高速的放大器的原因在丁它提供优异的信号保 直度。图3:建议反馈电阻与正相增益的关系图3来自相同器件的数据表,该图说明了对给定正相增益的推荐反馈电阻。正如预期 的那样,对增益为2的放大器推荐采用300Q的电阻,它具有最佳的增益平坦度、建 立时间和速度的组合。此外,从该图中可以看到,对增益为1的放大器需要采用600Q的反馈电阻来获得最优化o o o o o Doo o o o o OCB7 6 5 4 3 2 110-51弓玮口01 /的性能。这是因为环路增益非常高,较大的电阻值对于稳定 性是必需的。这就是与电压反馈

14、架构的主要差异。电流反馈放大器在使用时不能把输 出与反相输入短路连接。数据表上指定的最常用的电阻是针对增益为2的放大器。然而,你可以从图2中看到,你最终使用的实际数值有很大的灵活性,在数据表中所推荐的数值是在性能表和曲线 中公布的规范所使用的数值。如图3所示,对于增益为5的放大器,RF下降到200Q。该增益设置电阻现在仅仅是50Q,所以我们获得的输入缓冲电阻和增益设置电阻的值相近。这就降低了运放的闭 环互阻抗,并将随着增益的提局而开始限制带宽。在增益为8时,我们要把反馈电阻提高到275Q。对于更高的增益,一旦不能降低反馈电阻来提高增益, 带宽将受到损失, 而且放大器开始呈现电压反馈放大器的特性

15、。电路板的布局一般来说,在电流反馈放大器或高速器件的应用中,要仔细考虑的事情之一就是电路板的布局设计。表面安装的陶瓷电源旁路电容要非常靠近该器件,典型距离小于3mm。如果需要更大的电容,可以在电路板上较远的地方布置电解电容。电路板上常常有电 压调节器,这时,在电压调节器供应商推荐的电解电容之外,不必要采用额外的电解 电容。布置在放大器附近的小陶瓷旁路电容为放大器的高频响应提供能量。根据放大器的速度和被放大的信号速度,可能要采用两个数值大约相差10倍的陶瓷电容。例如,一个400MHz的放大器可能采用并连安装的0.01uF和1nF电容。当购买电容时,核查其自谐振频率至关重要,自谐振频率在此频率(4

16、00MHz)上下的电容毫无益处。地和电源层有助于为地电流和电源电流两者提供低的阻抗路径,在放大 器的输入和输出引脚以及反馈电阻的下面,要避免走地和电源层,这样做有助于通过 减小不想要的寄生电容来维持放大器的稳定性。要在可能的地方尝试采用表面贴装器件,这些器件提供最佳的性能并占用的电路板空 间也最小。电路板的布线应该保持尽可能地短,并应该调整其长宽以最小化寄生效应。在电源布线上,最坏的寄生特性是直流电阻和自感,所以电源布线要尽可能地宽。另 一方面,输入和输出连接线常常承载非常小的电流,所以容性寄生效应对它们的危害 最大。对于超过1cm的信号路径,最好采用受控阻抗和两端终接(匹配电阻)的传输线。因

17、为无法避免小量的寄生负载,电流反馈放大器的反馈电阻为特殊应用提供调整放大 器性能的灵活性。面对真正具有挑战性的电路板设计,即使采用非常大的反馈电阻可 能也是不够的。驱动容性负载550Q图4:利用申联输出电阻实现对容性负载的隔离如图4所示,通过引入一个电阻(ROUT),放大器几乎可以驱动任何大小的电容而没有 稳定性问题。这是电压和电流两种反馈放大器常用的技术,当驱动高速模/数转换器时,该技术特别有用。ROUT电阻被放置在运放和容性负载(即ADC)之间。只要电路板空间 允许,要把电阻靠近放大器放置。在图5中,图表上的曲线显示了根据电容大小建议的ROUT电阻数值。该图表是根据1kQ的阻性负载绘制的。

18、如果RL的数值较小,ROUT也可以更小。另一个选项是把ROUT放在反馈环之内(图中没有标出)。你可以把RF连接到隔离电阻的输出侧,而不是图中ROUT和放大器之间用RF连接。这样做将保持增益的精度,但是跟在其它例子中一样, 你将仍然在隔离电阻上损失相同大小的电压摆幅。尽管该技术确实有其缺陷,但应该 这样实现。因为电阻和电容形成一种低通滤波器,对丁这种电路的应用,存在某种带宽的损失 实际应用表明,无论电阻阻值多大,电容越大就越难驱动,并降低带宽。图5: LMH6738推荐的ROUT与容性负载的对比降低系统噪声 如果你正在构建一种IF放大器或低频RF放大器,那么把噪声最小化就特别重要。 利 用电流反馈放大器, 增加反馈电阻常常能减小系统的噪声, 这是因为频率响应衰减得 比电阻噪声的上升要快。为了减小跟随放大器电路的那部分噪声,非常重要的一点是仅仅采用必需的带宽,而 不要选用超过应用需求的带宽。除了采用反馈电阻的最佳数值之外,你可以给电路添 加附加的滤波电路。利用Sallen-Key滤波器拓扑,滤波器常常可以被恰当地合并到放大器的反馈网络中。如果可能的话,交流耦合将有助于消除低频噪声,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论