




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1第九章静电场选择题1. 在坐标原点放一正+Q,它在P点(x=+1 , y=0)产生的电场为 E。现在, 另外有一个负电荷-2Q,试问应将它放在什么位置才能使P点的电场强度为零?C. x 轴上 0<x<1 。A . x 轴上 x>1。B. x 轴上 x<0。D . y 轴上 y>0。E. y 轴上 y<0。解:根据电场叠加原理,应选(E) 。2. 下列说法中哪一个是正确的?A. 电场中某点场强的方向,就是将点电荷放在该点所受的电场力的方向。B. 在以点电荷为中心的球面上,该电荷产生的场强处处相同。C. 场强方向可由E二匚定出,其中q为试验电荷的电量,q可正可
2、负,Fq为试验电荷所受的电场力。D. 以上说法都不正确。()解:根据电场强度的定义应选 (C)。3. 如图,电量为 Q的点电荷被曲面S所包围,从无穷远处引另一电量为的点电荷至曲面外一点,则:()A. 曲面S的E通量不变,曲面上各点场强不变E. 曲面S的E通量变化,曲面上各点场强不变C. 曲面S的E通量变化,曲面上各点场强变化D. 曲面S的E通量不变,曲面上各点场强变化选择题3图解:根据高斯定理,应选 (D)。4. 两个同心均匀带电球面,半径分别为Ra和Rb ( Ra<Rb),所带电量分别为Qa和Qb,设某点与球心相距 r,当Ra <r< R b时,该点的电场强度的大小为:1
3、Qa +Qb4 n 0r1 21Qa -Qb4 n ;or 2#D.Qa 2 r5.图示为一具有球对称性分布的静电场的E-r关系曲线,请指出该静电场#是由下列哪种带电体产生的。()5A .半径为R的均匀带电球面B.半径为R的均匀带电球体C. 半径为R、电荷体密度:? =Ar (A为常数)的非均匀带电球体D. 半径为R、电荷体密度=A/r (A为常数)的非均匀带电球体解:根据计算可知,该电场为半径为R、电荷体密度P=A/r(A为常数)的非均匀带电球体所产生,故选(D )。E /1.-C、E=1/r20-q/ +qqo1 A1RrM0NDP选择题5图选择题6图6.如图示,直线MN长为21,弧0CD
4、是以N点为中心,1为半径圆弧,N点有正电荷+q, M点有负电荷 q 今将一试验电荷+q0从0点出发沿路径 OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功()(A) WV 0且为有限常量;(B) W> 0且为有限常量;(C) W=:( D) W = 0解:0点的电势为零,0点与无穷远处的电势差为零,所以将试验电荷 +qo 从0点出发沿任意路径移到无穷远处, 电场力作功均为零,故本题应选(D)。7. 在匀强电场中,将一负电荷从A移到B,如图所示,则:()A. 电场力作正功,负电荷的电势能减少;B. 电场力作正功,负电荷的电势能增加;C. 电场力作负功,负电荷的电势能减少;D. 电场
5、力作负功,负电荷的电势能增加解:根据图示,A点的电势高于 B点的电势,所以负电荷在 B点的电势能高于A点的电势能,电场力作负功。应选(B EA选择题7图8. 在点电荷q的电场中,选取以 q为中心、R为半径的球面上一点 P处作 电势零点,则与点电荷 q距离为r的P'点的电势为 ()a. q b亠注丄)c. qd丄(丄)4n r4n ;0rR4n ;0(r - R)4n q R r解:根据电势的定义可计算出P点的电势应为 一(丄-丄),故选(B )。4n名0 r R填空题1. 把两个相同的小球用同样长度的细绳I悬挂于同一点,小球的质量都为2d很小,则两小球m,带等值同号的电荷 q,如图所示
6、,设平衡时两线间夹角 间的距离x=。解:设细绳的拉力为 T,根据受力平衡可得:T cos v - mg,T sin v12 Xq 2 , tanr :-,由此可得x=(-2n;°mg1)30 I2q填空题1图-a填空题3图填空题2图#2. 位于x轴上的两个点电荷,分别带电量2q和q,坐标分别为a和-a。第三个点电荷q0放在x=处,它所受合力为零。解:第三个点电荷所在处场强为零,设该点的坐标为x,根据题意,-a <x<0,q4 n 0 (x a)22q2 ,4 ng(a x)由此解得:V2 1fxa = 一(3 -2、2)aJ 2 +1q d零,故e = &冗R _
7、号q_3,场强方向为从4冗心R8冗&°R0点指向缺口中心点。其对称轴与场强方向一致,S填空题5图+q填空题4图E通量为如图所示,则通过该半球面的解:n R2 E5. 如图,点电荷q和-q被包围在高斯面 S内,则通过该高斯面的E通量hsE dS =,式中 E 为的场强。半径为R的半球面置于场强为E均匀电场中,#11解:0;高斯面S上面积元dS处。6点电荷qi, q2, qa和q4在真空中的分布如图所示,图中S为高斯面,则通过该高斯的E通量:E dS =。式中的E是高斯面上任一点-s的场强,它等于点电荷 单独存在时在该点产生场强的矢量和。解:(q 2 +q 4)/ £
8、0 , q 1 , q 2 ,q 3 ,q 47. 图中电场强度分量为 Ex= b x1/2, Ey = Ez = 0,正立方体的边长为 a,则通过这正立方体的 E通量尬=,正方体内的总电荷 Q =_55解:(、2 -1)ba2 ; (、2 -1£°ba28. 三个平行的“无限大”均匀带电平面,其电荷面密度是+ d,则A, B, C,D四个区域的电场强度分别为:Ea =, Eb =, Ec =,(T +d +BC1(TAD填空题8图i1一:E0 /3E0 /3A B填空题9图Ed =。(设方向向右为正)解:每个无限大均匀带电平面产生的场强为二/(2& °)
9、,根据场强的叠加原理可得:Ea=七二/ (2 £°);Eb =-(2 &°);Ec=c/(2& °);Ed =3;/(2 &°)9. A、B为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为Eo,两平面外侧电场强度大小都为Eo /3,方向如图。则A、B两平面上电荷面密度分别为 c a =, cb =。解:根据上题可得:卫 A二E。,口A =1Eo,解得:2«o2勺 3-'A = -2 e o Eo / 3 ; -'B = 4 & o Eo / 310. 真空中有一半径
10、为 R的半圆细环,均匀带电 Q,如图所示,设无穷远处为电势零点,则圆心°点的处的电势 Vo =,若将一带电量为 q的点电荷从无穷远处移到圆心 °点,则电场力做功 W=。解:Vo = Q / (4 n e ° R ); W= -q Q / (4 n e ° R )填空题11图Q/IR °- _填空题io图11. 图示BCD是以°点为圆心,以R为半径的半圆弧,在 A点有一电量为+ q的点电荷,°点有一电量为-q的点电荷,线段 BA = R,现将一单位正电荷从6 n ;oRB点沿半径圆弧轨道 BCD移到D点,则电场力所作的功为 解
11、:/qq解:VbJ4 n R 4 n;oRqqqVd4 n ;o (3R)4 n ;o R6 n ; o RVbd-Vb -Vd q6 n ;o RWBD12. 质量为m电量为q的小球从电势 Va的A点运动到电势为 Vb的B点, 如果小球在B点的速率为Vb,则小球在A点的速率Va=。2 1解:由能量守恒可求得 Va= mVB _2q(VA _Vb) cos v ad v 4 :二0 am三计算题1.两个点电荷分别为 qi= 2 10-C, q2= -2 10二C,相距0.3m。求距q!为0.4m、距q? 为 0.5m 处 P 点的电场强度。(一1=9.0 109(N m2 C"2)4
12、 'n0解: P点与两个点电荷构成直角三角形,分别求岀两个点电荷在P点的场强,然后分解到水平和垂直方向,最后求出 场强大小 0.699 104 NC,场强方向与 x轴正向夹角 51.8。2.如图所示,在x y平面内有与y轴平行、位于 两条无限长平行的均匀带电细线,电荷线密度分别为 的电场强度。解:过z轴上任一点(0,0, z)分别以两条带 电细线为轴作单位长度的圆柱形高斯面,如图所示 按高斯定理求出两带电直线分别在该处产生的场强 为E + _= ± / ( 2 n e 0 r )式中正负号分别表示场强方向沿径向朝外朝里,如 图所示,按场强叠加原理,该处合场强的大小为E =2E
13、+co = - .a/2=_n e0r r n e0(a +4z )2 a 1方向如图所示或用矢量表示 E飞i:<0 (a 4z )3. 一段半径为a的细圆弧,对圆心所张的角为 q,试用a、q、0 0表示出圆心 o处的电场强度。解:取坐标xoy如图,由对称性可知:Ex 二 dEx =0dq 二 'dl 二 dEyT cos2 cosx = a / 2 和 x = - a / 2 处的X和-,求 z轴上任一点计算题2图0 0,其上均匀分布有正电荷4瓏0a4瓏0aE =EyCOS F t1 =q2 二;oaosQq2- ;oaSosin24.线电荷密度为的无限长均匀带电线,弯成如图形
14、状,若图弧半径为 试求图中O点场强。解:在o点建立坐标系。半无限长直导线ARAs在o点产生的场强。半无限长直导线i4 二;0RAB在i4- ;oR所以合场强R,oOo4“(R2 y2)3/2 i二齐齐jB:在o点产生的场强:刁jo点产生的场强为:4二;0Rj4“(R2 .严 jdyOOOO计算题4图E 2 E 彳.兀R( i j)4. 一电荷面密度为-的"无限大”平面,在距离平面a米远处的一点的场强大小的一半是由平面上一个半径为R的圆面积范围内的电荷所产生的,试求该圆半径的大小。解:电荷面密度为-的无限大均匀带电平面在任意点的场强大小为aE -2 ;o以图中0点为圆心,取rir+dr
15、的环形面积, 为dq =;2 ndr它在距离平面为a的一点处产生的场强其电量/ 、 i11a二1 o1店i / rZE计算题5图oardr2 ;o(a2 r则半径为R的圆面积内的电荷在该点处产生的场强为rdrera J rdrc (1 a )2 ;o 0 (a2 r2 )3 22 ;oa2 R2根据题意,令 E - -: (4 ;0),得到:R =£3a5. 实验证明,地球表面上方电场不为零,晴天大气电场的平均强度为 120V/m,方向向下,这意味着地球表面上有多少过剩电荷?试以每平方厘米的 额外电子数来表示。解:设想地球为一均匀带电球面,总面积为S,则它所带总电量为q = ;o :
16、 E dS 二;oES单位面积上所带电量为:;丁 = q = ;0ES额外电子数为:n =二=選 =6.64 105(个cm')e e6. 图示一厚度为d的"无限大”均匀带电平板,电荷体密度为 。试求板内外的电场强度分布,并画出电场强度随坐标x变化的图线,即Ex图线(设原点在带电平板的中央平面上, Ox轴垂直于平板)解:作圆柱高斯面 S)、S2,如图1,由高斯定理得1Px平板内区域(|x|<d/2): 2E1P 2dS , E1 =心%平板外区域(|x|>d/2):12 E2 丛S =丄 P 2d AS ,E2?drdiriTS2r111i11 Q屮JS1|111
17、1x r 1i1O11打x”x计算题7解图1计算题7解图2PdPd即 x>d/2 时 E2, x<-d/2 时 E2 :2%2®7. 一个电荷体密度为 (常量)的球体。(1)证明球内距球心 r处一点的p(2)若在球内挖去一个小球,如题图所示,证明小球空电场强度为Er3 ?0得证.E3詁矢量式E r3 ;o(2)填充法:设在空腔中填充电荷密度分别为 密度分别为:和的大球体和小球体。对腔内任一点P,大球 E!p二:3So:和_:的电荷球体,形成电荷由(1)的结果有r ; 小球 E 2P3 ;o13得证E 二 E仲E2P =-' ( r r')冷 a3心3统8.
18、 如图所示,在电矩为p的电偶极子的电场中, 将一电量为q的点电荷从A 点沿半径为R的圆弧(圆心与电偶极子中心重合,R远大于电偶极子正负电荷之间距离)移到B点,求此过程中电场力所作的功。解:用电势叠加原理可导出电偶极子在空间任意一点的电势:3V = p r /(4 n )式中的r为从电偶极子中心到场点的矢径。于是A、B两点的电势分别为:#15Va 二p/(4n pR2)Vb 二 p/(4n;°R2)q从A点移到B点电场力所做的功为(与路径无 关):2计算题9图W =q(VA Vb) - -qp/(2npR )9. 在盖革计数器中有一半径为R2的金属圆筒,在圆筒轴线上有一条半径为R的导线
19、,如果在导线与圆筒之间加上U的电压,试分别求(1)导线表面处(2)圆筒表面处的电场强度的大小。解:设导线上的电荷密度为 X,与导线同轴作单位长度的、半径为 r( R1<r< R2)的高斯圆柱面,则按高斯定理有2 n r E = / e o得到E = / (2n e or)( R1< rv R?)方向沿半径指向圆筒,导线与圆筒之间的电势差:尸2U J E则则:导线表面处圆筒表面处Ur ln( R2 / R1)E1UR1 ln( R2 / R1)E2UR2 l n R2 / R1)11. 如题图所示,一个均匀分布的带正电球层,电荷密度为p球层内表面半径为R1,球层外表面半径为 R
20、2,求A点和B点的电势(其分别到球心的距离解:以r表示到球心的距离,则电荷的分布情况如下:q1 =0r < R1«q2 =4 nRr3 R;)&兰r <R23q;=4 说R2 -Rf)出按高斯定理,可得各区域的场强情况计算题11图E1 忙2 卜 取无穷远为电势零点,=04 n ;or 23 ;°rq3_P4 n ;or 23 prVP 二r epPq2d 1,可得2 (R; -R13)332(r-R1 )r : R1R1_ r :R2r_R2:RiR2! :33-33Edr 0 dr2 (r3 - R;)dr2 (R; - R13)drrA'A启 3 orR3;or2 ;o(R;戌)°CR2P33吆 P33VbEdr2 (r Ri )dr2 (R2 - Ri )drrB or心2 3名orI22二罔(3R2_rB2R;b#或解:先求B点的电势。设 B点的半径为r ( & cr <R2 ) , B点处的电势等于以r为半径的球面内的电荷和该球面外的电荷产生,(r3-Ri3)r2+ l4二;or:4 :r 2 dr4二;or(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《非全日制劳动合同》模板
- 物业管理企业秩序维护工作手册范本
- 校长在教育教学质量提升经验交流会上的发言:从一节课的变化看教育质量的成长
- 幽门螺杆菌课件提问
- 2025年口腔行业投放分析报告-培训课件
- 巡察检查工作要点课件
- 峡山区安全培训班课件
- 尾气烟囱施工安全培训
- 小鸭找家课件
- 励志教育做一只努力向上的蜗牛主题班会
- 《消化性溃疡诊疗》课件
- GB/T 44927-2024知识管理体系要求
- 小学生美术素养的综合评价体系构建与实践
- 《混凝土质量通病》课件
- 化学反应中的表示课件九年级化学(2024)上册
- 乳腺肿物手术配合护理
- 2024年在图书管理员培训上的讲话范例(3篇)
- 《天津市主要葫芦科作物对CGMMV的抗性鉴定及耐热性研究》
- 《语言学概论》教案(完整版)
- 《成本会计》高职财经类专业全套教学课件
- 2023年合肥市肥东县大学生乡村医生专项计划招聘考试真题
评论
0/150
提交评论