




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、华北电力大学保定线性系统理论结课报告分 数:任课教师签字:华北电力大学研究生结课作业学年学期:第一学年第一学期课程名称:线性系统理论 学生姓名:学号:提交时间:2021.11.27目录目录 21研究背景及意义 32弹簧-质量-阻尼模型 32.1系统的建立 42.1.1系统传递函数的计算 52.2系统的能控能观性分析 72.2.1系统能控性分析 82.2.2系统能观性分析 92.3系统的稳定性分析 102.3.1反响限制理论中的稳定性分析方法 102.3.2 利用Matlab分析系统稳定性 102.3.3 Simulink 仿真结果 122.4系统的极点配置 152.4.1 状态反响法 152.
2、4.2输出反响法 162.4.2系统极点配置 162.5系统的状态观测器 182.6利用离散的方法研究系统的特性 202.6.1 离散化定义和方法 202.6.2零阶保持器 222.6.3 一阶保持器 242.6.4双线性变换法 263. 总结 284. 参考文献 285弹簧-质量-阻尼系统的建模与限制系统设计1研究背景及意义弹簧、阻尼器、质量块是组成机械系统的理想元件.由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器 就是其中的一种.缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散 能量的水平大小直接关系到系统的平安与稳定. 缓冲器在生活中处处
3、可见,例如 我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响 着汽车的稳定与驾驶员平安;另外,天宫一号在太空实现交会对接时缓冲系统的 稳定与否直接影响着交会对接的成功. 因此,对弹簧-质量-阻尼系统的研究有着 非常深的现实意义.2弹簧-质量-阻尼模型数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性 之间关系的数学表达式.其中,微分方程是根本的数学模型,不管是机械的、液 压的、电气的或热力学的系统等都可以用微分方程来描述.微分方程的解就是系 统在输入作用下的输出响应.所以,建立数学模型是研究系统、预测其动态响应 的前提.通常情况下,列写机械振动系统的微分方
4、程都是应用力学中的牛顿定 律、质量守恒定律等.弹簧-质量-阻尼系统是最常见的机械振动系统.机械系统如图 2.1所示,图2-1弹簧-质量-阻尼系统机械结构简图错误!其中错误!未找到引用源.、错误!未找到引用源.表示小车的质量,华北电力大学(保定)线性系统理论结课报告未找到引用源.表示缓冲器的粘滞摩擦系数,错误!未找到引用源.表示弹簧的 弹性系数,错误!未找到引用源.表示小车所受的外力,是系统的输入即 错误! 未找到引用源.,错误!未找到引用源.表示小车的位移,是系统的输出,即错 误!未找到引用源.,i=1,2 o设缓冲器的摩擦力与活塞的速度成正比, 其中错误! 未找到引用源.,错误!未找到引用源
5、.,错误!未找到引用源.,错误!未找到 引用源.,错误!未找到引用源.,错误!未找到引用源.2.1系统的建立由图2.1,根据牛顿第二定律,分别分析两个小车的受力情况 ,建立系统的动 力学模型如下:对错误!未找到引用源.有:错误!未找到引用源.对错误!未找到引用源.有:错误!未找到引用源.联立得到:对错误!未找到引用源.:错误!未找到引用源.对错误!未找到引用源.:错误!未找到引用源.令错误!未找到引用源.,错误!未找到引用源.,错误!未找到引用源., 错误!未找到引用源.,错误!未找到引用源.,错误!未找到引用源.;错误!未找到引用源.,错误!未找到引用源.得出状态空间表达式:一止£
6、 +旦m1c, + ca -_羯+9+ k3 , c2耳 + 匸3rruSir 4XnmrHlr所以,状态空间表达式为:错误!未找到引用源.+错误!未找到引用源ri o o 0y = lo 1 0 oh由此可以得出00100001+ %Ci + c2k-2+k3电氐+ Sm,Am2叫A =B =0'0,:错误!未找到引用源.,错误!未找到引用源.,错误!未找到引用源.,错误!未找到引用源.错误!未找到引用源.,错误!未找到引用源.代入数据得: 0A= °-400150 0000300-20000010930164.5-0.5c=00 ol2.1.1系统传递函数的计算在Matl
7、ab中,函数ss2tf给出了状态空间模型所描述系统的传递函数,其般形式是num,den=ss2tf(A,B,C,D,iu),其中 iu 是输入值.用Matlab将状态空间表达式表示为传递函数:在输入1单独作用的情况下A=0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 -4.5;B=0 0;0 0;1 0;0 0.5;C=1 0 0 0;0 1 0 0;D=0 0;0 0;n um,de n=ss2tf(A,B,C,D,1)运行程序,得到:num =0 -0.0000 1.0000 4.5000 200.00000 -0.0000 -0.0000 3.0000
8、 150.0000den =1.0e+0040.00010.00140.06230.18003.5000在输入2单独作用的情况下:A=0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 -4.5;B=0 0;0 0;1 0;0 0.5;C=1 0 0 0;0 1 0 0;D=0 0;0 0;n um,de n=ss2tf(A,B,C,D,2)运行程序,得到:num =0 -0.0000 -0.0000 3.0000 150.00000 -0.0000 0.5000 4.5000 200.0000den =华北电力大学保定线性系统理论结课报告1.0e+0040.0
9、0010.00140.06230.18003.5000由此可知:位移错误!未找到引用源.对外力错误!未找到引用源.的传递函数是:X1t _s2+4.5s + 200" s4+14s3 + 623s2 + 1800s + 35000位移错误!未找到引用源.对外力错误!未找到引用源.的传递函数是:3s + ISO" s4+14s3 + 623sz + 1800s + 35000位移错误!未找到引用源.对外力错误!未找到引用源.的传递函数是:X1t3s +150" s4+14s3 + 623sz + 1800s + 35000位移错误!未找到引用源.对外力错误!未找到引
10、用源.的传递函数是:X2t _0.5s2 + 4.5s+ 200 s4+14s3 + 623s2 + 1800s+350002.2系统的能控能观性分析在反响限制理论中只讨论输入量对输出量的限制.而这两个量的关系唯一地由系统的传递函数所确定.一个稳定的系统,一定能控.同时,系统的输出量本 身就是我们想要限制的量,对于一个实际的系统来说,输出量当然是可以被观测 到的,因此在反响限制理论中没有必要设立能控和能观这两个概念.然而在现代限制理论中,能控和能观是两个重要的根本概念. 我们把反映系 统内部运动状态的状态向量作为被控量,而且它们不一定是实际上可观测到的物理量,至于输出量那么是状态向量的线性组合
11、, 这就产生了从输入量到状态量的能 控性问题和从输出量到状态量的能观测性问题.在现代限制中,分析和设计一个限制系统,必须研究这个系统的能控性和能 观性.状态方程描述了输入 错误!未找到引用源.引起状态Xt 的变化过 程;输出方程那么描述了由状态变化引起的输出丫t 的变化.能控性和能观性正是分别分析错误!未找到引用源.t错误!未找到引用源.对状态Xt 的限制水平以及丫t 对Xt的反响水平2.2.1系统能控性分析设线性定常系统的状态方程为吒=hM+fcW式中Anx n矩阵Bnx r矩阵CmX n矩阵DmX r矩阵系统能控的充分必要条件为:能控判别阵 错误!未找到引用源.的秩R错 误!未找到引用源.
12、=n ,用Matlab计算能控矩阵的秩,从而对该系统的能控性进行判别,程序为:A=0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 -4.5;B=0 0;0 0;1 0;0 0.5;C=1 0 0 0;0 1 0 0;D=0 0;0 0;Qc=ctrbA,BR仁ran kQc运行程序,得到:R1 =4等于矩阵行数,由此可以判断,系统是完全能控的 2.2.2系统能观性分析设线性定常系统的状态方程为:错误!未找到引用源.11华北电力大学保定线性系统理论结课报告式中Anxn矩阵Bnxr矩阵CmXn矩阵DmXr矩阵能观的充分必要条件为:能观判别阵 错误!未找到引用源.
13、的秩R(错误! 未找到引用源.)=n ,下面,用Matlab计算能控矩阵的秩,从而对该系统的能控性进行判断:A=0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 -4.5;B=0 0;0 0;1 0;0 0.5;C=1 0 0 0;0 1 0 0;D=0 0;0 0;Qo=obsv(A,C)R2=ra nk(Qo)运行程序,得到:R2 =4满秩,因此可以判断,该系统是完全能观的 综上所述,这是一个既能控又能观的系统.2.3系统的稳定性分析2.3.1反响限制理论中的稳定性分析方法稳定性是一个系统可以被采用的最根本的条件,是系统的固有属性.稳定系统的定义如下:设限
14、制系统处于某一起始的平衡状态, 在外力的作用 下,它离开了平衡状态,当外作用消失后,如果经过足够长的时间它能够恢复到 起始的平衡状态,那么称这样的系统为稳定的系统,否那么称为不稳定的系统.由稳 定性的定义可见,稳定性是系统去掉外力作用后自身的一种恢复水平,所以是系 统的一种固有特性.对于线性定常系统,它取决于系统本身的结构和参数,而与 初始条件和外界作用无关.线性定常系统稳定的充分必要条件是:闭环系统特征方程的所有特征根为负 实数或具有负实部的共轭复数,即所有特征根位于复平面的左半平面. 只要有一 个闭环特征根分布在右半平面上,系统就是不稳定的;如果没有右半平面的根, 但有纯虚根,那么系统是临
15、界稳定的;在工程上,处于不稳定和临界稳定的线性定 常系统是不能采用的.在古典限制系统中,我们判断系统的稳定性经常用劳斯-赫尔维茨代数判据、 时域分析法、根轨迹法、频域分析法等方法,但那只针对低阶系统.实际的工业 生产中,经常会遇见一些特别复杂的系统.这时古典限制理论中的方法就有点捉 襟见肘了.1892年俄国学者李雅普诺夫提出的稳定性理论是确定系统稳定性的更一般 性理论,它采用了状态向量描述,不仅适用于单变量、线性、定常的系统,而且 适用于多变量,非线性、时变的系统.李雅普诺夫理论在建立一系列关于稳定性 概念的根底上,提出了判断系统稳定性的两种方法:一种方法是利用线性系统微分方程的解来判断系统稳
16、定性,称为李雅普诺夫第一法或间接法;另一种方法是 首先利用经验和技巧来构造李雅普诺夫函数,进而利用李雅普诺夫函数来判断系 统稳定性,称为李雅普诺夫第二法或直接法.2.3.2利用Matlab分析系统稳定性随着计算机技术的开展,在现代限制理论中,我们经常采用Matlab判断系统的稳定性.对于线性定常系统,典型的系统输入信号类型有脉冲、阶跃、斜坡、 加速度、正弦信号.系统的稳定性是对任何输入信号而言,即假设一个系统是稳定 的,那么其在任何输入信号情况下对应的输出曲线是收敛的.然而,阶跃信号包含了另外几种常见输入信号的特性,所以我们常通过观察系统的单位阶跃响应曲线 判断判断系统的稳定性.假设系统的单位
17、阶跃响应是收敛的,那么系统一般是收敛的; 否那么,是发散的.在Matlab中输入相应系统的状态空间表达式矩阵来求取系统的特征值:A=0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 -4.5;B=0 0;0 0;1 0;0 0.5;C=1 0 0 0;0 1 0 0;D=0 0;0 0;eig(A)运行程序,得到:ans =-5.7735 +22.3859i-5.7735 -22.3859i-0.9765 + 8.0332i-0.9765 - 8.0332i因此由此可以知道,经计算得出A阵的所有特征根均在复平面的左半平面, 得出该系统是稳定的.给系统加起阶跃信
18、号:A=0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 -4.5;B=0 0;0 0;1 0;0 0.5;C=1 0 0 0;0 1 0 0;D=0 0;0 0;step(A,B,C,D)结果如下19Step ResponsedmA« *+ AI _ _f 1 / v y0.0080.0060.0040.002From: ln(1)From: In(2)0.010.0080.006OT 0.0040.002024*A11 AI v11K.2460Time (sec)图2-2阶跃响应曲线由图可以看出,在阶跃响应下,系统在一定时间内收敛于某一固定值,
19、因此 可以判断系统是稳定的,但同时我们也可以看出,系统的调节时间比拟长,如果 想要减少调节时间,那么需要重新配置极点,对系统进行改良.下面的章节将对 系统进行极点的配置.2.3.3 Simuli nk 仿真结果根据上述原理,用Matlab中的Simulink组件进行仿真.根据状态空间表达式,搭建系统模型如下列图所示:我们分别对只有输入1作用下和只有输入2作用下的系统使用Simulink进 行仿真,让其与Matlab图像进行比照SilHieSiln9>Cun!'也Ird图2-3 Simulink 模型图1仅有错误!未找到引用源.作用时,系统的输出如下列图所示图2-4 u1作用时响应
20、曲线图中,绿色为输出1的曲线,蓝色为输出2的曲线.经分析:此曲线与对应Matlab曲线一致,系统稳定,但是超调量较大,调节时间较长.2仅有错误!未找到引用源.作用,系统的输入如下所示:图中,绿色为输出1的曲线,蓝色为输出2的曲线.经分析:同样,此曲线与对应的Matlab曲线一致,系统稳定,但是超调量较大,调节时间较长.图2-6 u1、u2同时作用时响应曲线图中绿色为输出1的曲线,蓝色为输出2的曲线.经分析:此曲线与Matlab 曲线一致,系统稳定,但是超调量较大,调节时间较长.需要进行极点配置,使华北电力大学(保定)线性系统理论结课报告系统得到更好的性能.2.4系统的极点配置限制系统的性能主要
21、取决于系统极点在根平面上的分布.因此,在系统设计中,通常是根据对系统的品质要求,规定闭环极点应有的分布情况. 所谓的极点 配置就是,就是通过选择反响矩阵 K,将闭环系统的极点恰好配置在根平面上所 期望的位置,以获得所希望的动态性能.2.4.1状态反响法极点问题首先解决是否能通过状态反响来实现给定的极点配置,即在什么条件下才有可能根据规定的要求来配置极点. 其次是,这样的反响阵K如何确定的 问题.图2-7状态反响示意图(1)采用状态反响配置系统极点条件:系统(A,B,C)采用状态反响,任意配置其闭环系统极点的充要条件为:系统"(A,B,C)完全能控.假设系统不是完全能控的,就必须按能控
22、性分解,只能任 意配置可控的极点.(2)极点配置的方法:假设原系统(A,B)可控,那么采用状态反响阵K,有A-Bk!b可控.n +设原系统的特征方程为S 9nS+一 +a!s + a0 =0.0 0 0033+3B =-a° % -6 +K -a* +人_I_1 一010OK,k,那么有:A BK =配置后的闭环特征方程为:sn - anl kn二snJ1 川卷 kjs a0 kJ = 0 ;假设闭环系统希望的极点为二1,'2,n,得到:f, = s - r s -,2 S-,n =sn rnsn ris ro.为使系统到达希望性能,比照式1和式2中系数,使之相等,即可求 得
23、状态反响阵K二ko,/,kn.采用状态反响配置系统极点不改变系统可控 性,它不能影响系统中不可控局部模块.2.4.2输出反响法x = Ax + Bnx = A- HKx + Ryy = Cx= j = Cv图2-8输出反响示意图21对于完全能控的单变量系统,不能采用输出线性反响来实现闭环系统极点任 意配置.不能任意配置极点,正是输出线性反响的根本弱点.为了克服这个弱点, 在经典限制理论中,往往采取引入附加校正网络,通过增加开环零极点的方法改 变根轨迹走向,从而使其落在指定的期望位置上.对于完全能控的单变量系统a A,B,C,通过带动态补偿器的输出反响时限 极点任意配置的充要条件是:1.系统完全
24、能观测;2.动态补偿器的阶数为n-1 o 2.4.2系统极点配置在现代限制理论中是用系统内部的状态来描述系统的,所以经常从系统的状态引出信号作为反响量.利用状态反响只能改变系统能控局部的极点,而不能改变不能控局部的极点,因此利用状态反响进行极点配置的充分必要条件是系统必 须是完全能控的.对一个可控系统,在采用状态反响后,可以实现闭环极点的任意配置,即通 过状态反响的方法,使闭环系统的极点位于任意期望的位置上.对于1上収二其中x是状态变量n维,u是限制信号,这里选取限制信号为错误!未找到引用源.因此,错误!未找到引用源.系统的稳态响应和瞬态响应特性由矩阵 错误!未找到引用源.的特征决定虽然理论上
25、系统的闭环极点离S左半平面越远越好,但是在工业生产实践中,系统极点离左半平面越远,系统的运动状态就变化的越快,这就要求执行机构快速运作,即使再好的执行元件也会短时间内被损坏掉.所以新的极点的绝对值大约是原系统极点绝对值的3至4倍左右.取P仁-15+40i ; P2= -15-40i ;P3= -3+10i ; P4= -3-10i ;利用Matlab进行极点配置,希望可以减小超调量,缩短稳定时间以优化系统.Matlab程序如下:A=0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 -4.5;B=0 0;0 0;1 0;0 0.5;C=1 0 0 0;0 1 0
26、 0;D=0 0;0 0;p=-15+40i,-15-40i,-3+10i,-3-10i;k=place(A,B,p)step(A-B*k,B,C,D)运行程序,得到:k =-234.6522131.851214.45616.3957643.3762-89.97656.765836.0878华北电力大学保定线性系统理论结课报告27Step ResponseFrom: In(2)LLL-i!r-3rrr-3X 10From: ln(1)5 2 5 1 5 02 10 o- QI0.511.52oTX -I 、 - L J2 5 1 5 0 54 0 0-XZ.LUO- JOT1.5200.51-
27、1.5 L0Time (sec)图2-9稳态响应曲线由响应曲线可以看出该系统重新配置极点后,具有较快的调节时间,而且也减少了超调量,改善了系统的动态性能与稳态性能.2.5系统的状态观测器通过状态观测器可以任意配置系统的极点,从而使闭环系统具有期望的稳态和动态性能.但在工业生产中,系统的状态变量并非都是物理量, 或者是难以测得的量.这样一来,系统的所有状态变量未必都可以直接测量得到,因此,状态 反响这种限制方式在许多实际限制问题中往往难以直接应用和实现. 状态观测器 就是利用系统的外部输入输出信息来确定系统内部的状态, 进而,在系统的极点 配置状态反响中,用观测器得到的状态估计值代替系统的真实状
28、态. 下列图为状态 观测器的结构图:图2-11状态观测器示意图使用MATLAB本系统设置状态观测器,选用极点配置时的极点,程序如下 图所示:A=0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 -4.5;B=0 0;0 0;1 0;0 0.5;C=1 0 0 0;0 1 0 0;D=0 0;0 0;p=-15+40i,-15-40i,-3+10i,-3-10i;K仁place(A,B,p)A仁 A-B*K1L仁(place(A',C',p)'A2=A-L1*CL2=(place(A1',C',p)'A3=A1-L
29、2*Csys2=ss(A2,B,C,D)sys2=ss(A3,B,C,D)运行上面程序,得到:L1 =7.083330.0895-30.579615.4167-41.6552 -96.5401168.1877 200.0790A2 =-7.0833 -30.08951.0000030.5796 -15.416701.0000-358.3448 396.5401 -9.0000 6.0000-18.1877 -400.07903.0000 -4.5000L2 =3.7432-7.1200-21.4563 -3.7432190.9894 93.5822115.5037 -24.2083A3 =-3
30、.74327.12001.0000021.45633.743201.0000-655.5795 -119.9176 -18.2856 30.9515-81.9216 -402.0612 -29.0527 -17.7144其中L1代表没进行状态反响时的状态观测反响矩阵,L2代表进行了状态反馈的状态观测矩阵.2.6利用离散的方法研究系统的特性 2.6.1离散化定义和方法利用数字计算机对线性定常连续系统求数值解是现代科学技术研究中常用 的一种方法,它不但方便,而且精确.由于实际工业生产中线性定常连续系统被 控对象需要在线限制等,必须将连续时间系统的状态方程转化为离散系统的状态 方程,即将矩阵微分方程
31、化成矩阵差分方程,这就是连续系统的离散化.根据离散系统的构成设备不同可以将离散系统分为采样限制系统和数字控制系统:a. 采样限制系统:限制系统的构成中选择了采样开关或者含有开关特性的 设备0b. 数字限制系统:限制系统的限制器选择了专用数字计算机.通常,把系统中的离散信号是脉冲序列形式的离散系统, 称为采样限制系统 或脉冲限制系统;而把数字序列形式的离散系统,称为数字限制系统或计算机控 制系统.采样限制系统:采样限制系统是对来自传感器的连续信息在某些规定上的时 间瞬时值上取值.例如,限制器系统中的误差信号可以是断续连续的脉冲信号, 而相邻两个脉冲之间的误差信息,系统并没有收到.如果在有规律的间
32、隔上,系 统取得了离散信息,那么这种采样称为周期采样;反之,如果信息之间的间隔是时 变的,或随机的,那么称为非周期采样,或随机采样.在采样限制系统中,把连续信号转变为脉冲序列的过程称为采样过程, 简称 采样.实现采样的装置称为采样器,或采样开关.用T表示采样周期,单位为s ; 错误!未找到引用源°,表示采样频率,单位为 错误!未找到引用源°错误!未 找到引用源.表示采样角频率,单位为 错误!未找到引用源.在采样限制系统 中,把脉冲序列转变为连续信号的过程称为信号复现过程.实现复现过程的装置 称为保持器.采样周期的选择满足香农采样定理. 采样周期太大会使信号失真,采样周期 太
33、小那么容易造成计算过程的累积偏差或失去采样系统的特性.香农采样定理是在 设计离散系统时必须要遵循的准那么,它给出了自采样的离散信号不失真地恢复原 连续信号所必需的理论上的最低采样频率.采样频率应该满足错误!未找到引用源.即是采样角频率错误!未找到引用源.,应使其对连续信号中的最高频率分 量,在一个周期内被采样2次以上上半周与下半周都至少采样一次,那么采样 后的脉冲序列中将包含了连续信号的全部信息.但是,在仿真中所遇到的大多数 被再现信号是没有频带限的,所以一般取采样频率再现信号主要频带中的最高频 率的510倍.在离散限制系统的设计过程中,采样周期确实定依据的是现场检 测的被调量信号的频率,对于
34、频率较高的信号,采样周期的设定就小,而对于变 华北电力大学(保定)线性系统理论结课报告化过程较慢的低频信号,采样周期的设定可以大一些.有关概念在工程上的实际 应用会有专门的内容介绍.线性连续系统状态方程离散化的实质是将矩阵微分方程化为矩阵差分方程,它是描述多输入多输出离散系统的一种方便的数学模型.在推导离散化系统的方程时,假定系统是周期性采样,并且采样脉冲宽度远 小于采样周期,采样周期T的选择满足香农采样定理,还假设系统具有零阶保持 特性,即在两个采样瞬间之间,采样值不变,并等于前一个采样时刻的值.通常离散化的方法有很多,例如欧拉法,梯形法,龙哥-库塔(Runge-Kutta) 法,阿达姆斯(
35、AdamS法等等.下面主要运用三种方法来对系统进行离散化并 运用计算机进行模拟系统的特性,分析不同采样周期对系统的影响效果.262零阶保持器零阶保持器可以将脉冲序列变成连续的方波信号,即将前一个采样周期的数值保存到下一个采样点到来的时候.在Matlab中输入函数如下:A=0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 -4.5;B=0 0;0 0;1 0;0 0.5;C=1 0 0 0;0 1 0 0;D=0 0;0 0;p=-15+40i,-15-40i,-3+10i,-3-10i;k=place(A,B,p);H,l,J,K=c2dm(A-B*k,B,C
36、,D,0.1,'zoh')dstep(H,l,J,K)分别设置采样时间为0.1s, 0.05s, 0.01s,运行程序,得到下列图:#华北电力大学保定线性系统理论结课报告39l mAStep Responseo- .TDTKUO. .OTt=0.1sCD0FP mAStep Responsex 10AT_k-u o- OTzto o- OTt=0.05sStep ResponseFrom: ln(1)From: ln(2)o .dCPOJ-1 mA32.521.510.5-3X 10x 1021.5-1.5010.50-0.5-15010015050100150200200 0
37、Time (sec)t=0.01s图2-12零阶保持器离散化2.6.3 一阶保持器采用一阶保持器进行离散化,程序如下A=0 0 1 0;0 0 0 1; -400 300 -9 6;150 -200 3 -4.5;B=0 0;0 0;1 0;0 0.5;C=1 0 0 0;0 1 0 0;D=0 0;0 0;p=-15+40i,-15-40i,-3+10i,-3-10i;k=place(A,B,p);H,l,J,K=c2dm(A-B*k,B,C,D,0.1,'foh')dstep(H,l,J,K)同样,分别设置采样时间为0.1s,0.05s,0.01s,运行程序,得到下列图:l mAStep Responseo- .TXZ.LUO- .OTt=0.1sStep Responsex 10o- OTCD0FP mAFrom: ln(1)From: ln(2)A2.521.510.5-30yrLU o- OTt=0.05sStep ResponseFrom: ln(1)From: ln(2)o .dCPOJ-1 mA32.521.510.5-3X 10x 1021.5-1.5010.50-0.5/p>
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电线电缆维护知识培训总结
- 电站电工基础知识培训内容
- 电磁波的传播方式
- 北森测评试题及答案考试时间
- 北京滴滴专车考试题目及答案
- 电焊工焊接知识培训内容课件
- 中考试题及答案英语答案
- 高新区职称课件
- 高层过道消防知识培训课件
- 2025年绿色照明项目立项申请报告模板
- 家长会校长讲座
- 中国脑小血管病诊治指南2023版
- 已充氧的医用氧气瓶产品供应链分析
- 房地产中介服务操作手册
- 水质-氯化物的测定验证报告
- 2024年全国职业院校技能大赛中职组(水利工程制图与应用赛项)考试题库(含答案)
- 多年生牧草加气地下滴灌技术规程
- 2024至2030年中国纪录片市场投资方向及未来运行状况监测报告
- 托管班安全责任承诺书
- 江苏省南京市鼓楼区2023-2024学年八年级下学期期末英语试卷(含答案解析)
- 盘扣式卸料平台计算书
评论
0/150
提交评论