




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、灰色理论1、灰关联理论2、灰色预测模型1.1、灰关联分析方法概述n灰色系统是既含有已知信息,又含有未知信息或非确知信息的系统。灰关联分析是依据灰数列间几何相似的序化分析与关联测度,来量化不同层次中多个序列相对某一级别的关联性,其实质为灰色系统中多个序列之间接近度的序列分析,这种接近度称为数据间的关联度。1.1、灰关联分析方法概述关联度愈高,说明该样本序列隶属的关系愈贴近,这是综合评价的信息和依据。在数学理论上,它反映了离散数列空间的接近度,所以是一种几何分析法。灰关联度分析的基本思想是根据离散数据之间几何相似程度来判断关联性大小,并进行排序。n在此,我们通过两个实例给出灰关联分析方法的过程1.
2、2、灰关联分析的步骤n应用灰关联分析,一般包括下列的计算和分析步骤:1)确定参考序列和比较序列;2)作原始数据变换;3)求绝对差序列;4)计算关联系数;1.2、灰关联分析的步骤5)计算关联度;6)排关联序;7)列关联矩阵进行优势分析。1.2.1 数据变换技术n为了保证建模的质量与系统分析的正确结果,对收集来的原始数据必须进行数据变换处理,使其消除量纲和具有可比性。定义1 设有序列称映射为序列到序列的数据变换。( (1), (2), ( )xxxx n1.2.1 数据变换技术称映射为序列 到序列 的数据变换1)初值化变换:2)均值化变换: :fxy( ( )( ),1,2,f x ky kkn(
3、 )( ( )( ), (1)0(1)x kf x ky kxx1( )1( ( )( ),( )nkx kf x ky kxx kxnxy1.2.1 数据变换技术3)百分比变换:4)倍数变换:5)归一化变换: ( )( ( )( )max ( )kx kf x ky kx k( )( ( )( ),min ( )0min ( )kkx kf x ky kx kx k00( )( ( )( ),0 x kf x ky kxx1.2.1 数据变换技术6)极差最大化变换:7)区间值化变换: ( )min ( )( ( )( )max ( )kkx kx kf x ky kx k( )min ( )
4、( ( )( )max ( )min ( )kkkx kx kf x ky kx kx k1.2.2 变换的性质n上述变换满足1)当 ;2)保序性:3)保差异性:对任意的 ,有 ( )0,1,2, , ( )0 x kkn y k( )( ), ( )( ); ( )( ), ( )( )x ix jy iy jx ix jy iy j, , ,i t l j( )( )( )( )( )( )( )( )x ix ty iy tx lx jy ly j1.2.3 多指标序列的数据变换n设有多指标序列称映射1111(1),(2),( )xxxx n2222(1),(2),( )xxxx n(1
5、),(2),( )mmmmxxxxn:iifxy( ( )( ),1,2,iif x ky k kn1.2.3 多指标序列的数据变换n为序列 到序列 的数据变换。n多因素指标的数据变换主要依赖于指标的属性类型,常用的属性类型有效益型(指标值越大越好型)、成本型(指标值越小越好型)、固定型(指标值越接近某固定值越好型)、区间型(指标值越接近某固定区间越好)、偏离型(指标值越偏离某固定值越好)、偏离区间型(指标值越偏离某固定区间越好)等。 ixiy1.2.3 多指标序列的数据变换n关联分析中常用的数据变换有1)效益型: 2)成本型: ( )min( )( )max( )min( )iiiiiiii
6、x kx ky kx kx kmax( )( )( )max( )min( )iiiiiiiix kx ky kx kx k1.2.3 多指标序列的数据变换3)固定型: 为固定值 4)区间 型: ( )a kmax( )( )( )( )( )max( )( )min( )( )iiiiiiiix ka kx ka ky kx ka kx ka k ( ), ( )b k b kmax( )( )( ),( )max ( )( ), ( )( )max( ) min( )iiiiiiiiiiikky kkx kb k b kx kkk1.2.3 多指标序列的数据变换5)偏离 型:6)偏离区间
7、型: ( )c k( )( )max( )( )( )max( )( )min( )( )iiiiiiiix kc kx kc ky kx kc kx kc k ( ), ( )b k b k( )max( )( ),max( )min( )( )max ( )( ),( )( )iiiiiiiiiiikky kkkkb kx kx kb k1.2.4 关联度定义2:设为 灰关联因子集, 为参考序列, 为比较序列, 分别为 与 的第 个点的数,01,mx xx0 xix0( ),( )ix kx k0 xixk0000(1),(2),( )xxxx n1111(1),(2),( )xxxx n
8、2222(1),(2),( )xxxx n(1),(2),( )mmmmxxxxn1.2.4 关联度定义 为灰关联系数。其中为绝对差, 为两极最小差, 为两极最大差, 为分辨系数minmax00max( ),( )( )iir x kx kk 00( )( )( )iikx kx kmin0minmin( )iikkmax0maxmax( )iikk(0,1)1.2.4 关联度定义3:设为 指标 的权重,满足 , ,定义为 对 的灰关联度, 是序列几何距离的一种度量。kk01k11nkk001(,)( ),( )nikikr xxr x kx k0 xix0(,)ir xx1.3 实例 n1.
9、3.1 实例一:用灰关联分析的方法分析影响呼和浩特市大气污染的各主要因素的污染水平。n表1 1999-2003年城市大气污染监测数据因素 1999 20002001 20022003 大气污染值 0.732 0.646 0.636 0.598 0.627 no0.038 0.031 0.0420.036 0.043 tsp 0.5070.451 0.448 0.4110.1220.0480.034 0.030 0.0300.031 工业总产值 183.25 207.28 240.98 290.80 370.00基建投资 24.03 44.98 62.7983.44 127.22 机动车数量85
10、508 74313 85966 100554 109804 煤炭用量 175.87 175.72 183.69 277.11 521.26 沙尘天数 10 13 13 11x2so计算步骤:(1)将城市区域大气污染值作为参考序列 ,其他各因素作为比较因素序列 ,对各因素初值化处理,得各标准化序列表2 标准化数据0( ),1,5x k k ( ),1,8,1,5ix k ik( ),1,8,1,5iy k ik因素 1999 20002001 20022003 大气污染值 10.883 0.869 0.817 0.857 no10.816 1.105 0.9471.132 tsp 10.890
11、0.884 0.811 0.241 10.708 0.625 0.625 0.646 工业总产值 11.131 1.315 1.5872.019 基建投资 11.872 2.613 3.4725.294 机动车数量10.869 1.005 1.176 1.284 煤炭用量 10.999 1.044 1.576 2.964 沙尘天数 11.300 1.300 0.1000.1002sox(2)由上表求绝对差。得序列 01(0,0.067,0.236,0.130,0.275)02(0,0.007,0.015,0.006,0.616)03(0,0.175,0.244,0.192,0.211)04(0
12、,0.248,0.446,0.770,1.162)05(0,0.989,10744,2.655,4.437)06(0,0.014,0.136,0.359,0.427)07(0,0.116,0.175,0.759,2.107)08(0,0.417,0.431,0.717,0.757)minmax0,4.437(3)计算关联系数如下:取 0.50 ( )000.5 4.4370.5 4.437j ki01(1,0.971,0.904,0.945,0.890)02(1,0.997,0.993,0.997,0.783)03(1,0.927,0.901,0.920,0.913)04(1,0.899,0.
13、833,0.742,0.656)05(1,0.692,0.560,0.455,0.333)06(1,0.994,0.942,0.861,0.839)07(1,0.950,0.927,0.861,0.839)08(1,0.842,0.837,0.756,0.746)(4)计算关联度n取 ,比较因素和参考因素的关联度为 123450.25010111( )0.9425krk5020211( )0.9545krk5030311( )0.9355krk5040411( )0.8265krk5050511( )0.6085krk5060611( )0.9275krk5070711( )0.8275krk
14、5080811( )0.8365krk结果分析n从结果可以看出,直接因素(前3个)关联度的排序为 ,说明在城市大气环境的影响因素中,tsp是主要因素;在间接因素(后5个)中,关联度的排序为 ,机动车数量是主要的间接影响因素。020103rrr0608070405rrrrr1.3.2 实例二:基于灰度关联的多传感器融合目标识别方法 n目标识别的基本任务就是利用样本的特征和目标库中已知目标的特征的比较,将待识别样本划分为相应的目标类型。目标识别技术是军用指挥自动化系统的关键技术之一,一直是该领域的研究重点和热点。3.2.1单传感器灰色识别原理n设目标库 中有 个目标,每个目标有 个属性。记 , 表
15、示第 个目标, 表示第 个目标的第 个属性。在灰色关联分析理论中,目标库中的每一个目标称为比较序列 。传感器收到的待识别的目标记为 ,称为参考序列, 。 xmnix( (1),(2),( )iiixxx n(1,2,)ix imi( )ix k(1,2, )knikix0 x0 x000(1),(2),( )xxx n3.2.1单传感器灰色识别原理n经过数据处理后计算 ,用于反映了待识别目标的第 个属性与第 个目标类的第 个属性的匹配程度。然后计算 对 的灰关联度 ,反映了待识别目标与第 个目标的相似程度。n基于灰关联分析的识别原理为计算待识别目标与目标库中各目标的灰关联度,按照灰色系统分辨原
16、理,对关联度进行 0( ),( )ir x kx kkik0 xix0(,)ir xxi3.2.1多传感器融合灰色识别原理 n排序,若 ,则判断认为目标的类型为 所对应的目标类型。n多传感器融合灰色识别原理n设有 个传感器在同一时间内对同一个目标进行监测,第 个传感器收到的待识别目标信息记为n多传感器灰色识别融合原理可叙述如下: 000max (,)iiirr xx0inj000(1),(2),( )jjjxxxn0 jx3.2.1多传感器融合灰色识别原理n对1)计算第 个传感器收到的待识别目标的第 个指标与目标库中第 个目标的关联系数 ;2)计算 ,得向量 ( )3)设第 个传感器的权重为
17、, 1,2,jnjk0( ),( )jir xkx ki0(,)jir xx(1,2,)imjr0(,)jir xx1 mjj),(0ijjixxrr3.2.1多传感器融合灰色识别原理n求矩阵 ( ) 的加权1范数 ,则断定多传感器融合识别的结果为目标属于第 类。1.3.3 应用根据不同目标类型在空中飞行时地面防空系统雷达所能探测的指标和雷达系统校飞中所采用的指标,我们选取空中飞行器rjirmn0ir1rnjjijmir11max0i1.3.3 应用n 、高度 、机动能力 (加速度)、雷达波形大小 、雷达回波强弱 这5项指标,建立目标类型的参数模板。设有两个传感器在同一时刻对同一目标进行观察,
18、观测值如表3所示。n表3 目标类型的参数模板及待识别的目标参数vh1p2p战略轰炸机b52 250 10000 1 0.8 0.8 歼击机f16 280 10000 2.50.50.5武装直升机 100 64002.00.20.2隐形战斗机f117a22010000 1.00.10.1传感器1的观测数据23810000 1.00.8 0.7传感器2的观测数据 24010000 1.020.8 0.721x2x3xh1p2p1.3.3 应用n将各传感器的观测数据作为参考序列,各机型参数作为比较序列,对各参数值进行初值化处理,得到无量纲序列表4。战略轰炸机b52 140 0.004 0.0032
19、0.0032 歼击机f16 135.71 0.0089 0.0018 0.0018 武装直升机 1 64 0.02 0.002 0.002 隐形战斗机f117a145.45 0.0045 0.00045 0.00045 传感器1的观测数据142.017 0.0042 0.0034 0.0029传感器2的观测数据 141.67 0.00425 0.0033 0.003 1x2x3xh1p2p1.3.3 应用由上表计算绝对差,取分辨系数 0.5,各指标的权重相同, 由式(1)计算灰关联系数,由式(2)计算灰关联度得 (0.9690,0.9269,0.8663,0.9523),(0.9740,0.9
20、303,0.8663,0.9493),灰关联度矩阵为1r2r21rrr0.96090.92690.86630.95230.97400.93030.86630.94931.3.3 应用n由单传感器识别原理,可判定传感器1和传感器2观测到的目标为战略轰炸机,但由于传感器1的灰关联度中,最大值和次大值之间仅差0.01左右,所以由传感器1判定为战略轰炸机的可信度并不高,现设传感器2的观测精度高,取其权重为 ,传感器1的权重为 ,由多传感器融合识别原理,计算矩阵 的列加权和得 ( 0.972,0.9292,0.8663,0.9503),故 的加权1范数为 0.972,即多传感器融合识别的结果为战略轰炸机
21、。3231rcrr1r1r二、灰色模型n2.1 灰色模型概述n从灰色系统中抽象出来的模型。灰色系统是既含有已知信息,又含有未知信息或非确知信息的系统,这样的系统普遍存在。研究灰色系统的重要内容之一是如何从一个不甚明确的、整体信息不足的系统中抽象并建立起一个模型,该模型能使灰色系统的因素由不明确到明确,由知之甚少发展到知之较多提供研究基础。灰色系统理论是控制论的观点和方法延伸到社会、经济领域的产物,也是自动控制科学与运筹学数学方法相结合的结果。2.1 灰色模型概述n如果一个系统具有层次、结构关系的模糊性,动态变化的随机性,指标数据的不完备或不确定性,则称这些特为灰色性。具有灰色性的系统称为灰色系
22、统灰色系统。在灰色系统理论中,利用较少的或不确切的表示灰色系统行为特征的原始数据序列作生成变换后建立的,用以描述灰色系统内部事物连续变化过程的模型,称为灰色模型,简称gm模型模型2.2 gm(1,1)模型n2.2.1gm(1,1)建立n灰色系统理论的实质是将无规律的原始数据进行累加生成,得到规律性较强的生成数列后再重新建模。由生成模型得到的数据再通过累加生成的逆运算累减生成得到还原模型,再还原模型作为预测模型。灰色模型是预测工作的基础模型。2.2.1gm(1,1)建立n记 为原始序列n 为由 经过一次累加生成的序列,其中 , n 表示 的均值生成序列, )(),2(),1 ()0()0()0(
23、)0(nxxxx)(),2(),1 ()1()1()1()1(nxxxx)0(xkiixkx1)0()1()()(nk, 2 , 1)(),2(),1 ()1 ()1 ()1 ()1 (nzzzz)1(x)() 1(21)()1()1()1(kxkxkznk, 3 , 22.2.1gm(1,1)建立n命题1: 序列 的gm(1,1)模型定义为则参数 的表达式为 )0(xbkazkx)()()1()0(nk, 3 , 2ba,1()ttab bb yb (1)(1)(1)(2)1(3)1( )1zzbzn(0)(0)(0)(2)(3)( )xxyxn2.2.2新息改进gm(1,1)模型n设 ,其
24、参数 为的gm(1,1)模型如上n 为系统最新信息,由于它与预测时间最为接近,因而对系统特征的研究更具价值,记 ,由建立的gm(1,1)模型称为新息gm(1,1)模型。n该模型的边界条件为 )1(),2(),1 ()0()0()0()0(nxxxxba,)() 0(nx)()0()0()0(1nxxx) 1 () 1 () 1 ()0()1()1(xxx2.2.2新息改进gm(1,1)模型n若将含系统最新信息的条件作为边界条件,即 ,得到如下模型 n定义2.1: 称为新息改进gm(1,1)模型。)()()1()1(nxnx)()()()()1 ()1 (1)1 (1)0(nxnxbkzakxn
25、k3 , 22.2.2新息改进gm(1,1)模型n命题2: 新息改进gm(1,1)模型的参数估计为nkkznkxda2)1(1)0(11)() 1()(1nkkzkxdb21)1(1)0(11)()(122)1(1)(nkkznkkz2)1(1)(2111) 1( nd2.2.3灰色模型的建模步骤n(1)级比检验、建模可行性分析。n对给定序列 ,能否建立高精度的gm(1,1)模型,一般可用 的级比 的大小与所属区间来判断。n设 , ,若 ,则可gm(1,1)建模。 (0)x(0)x0( )k)(),2(),1 ()0()0()0()0(nxxxx0(0)(0)( )(1)( )kxkxk220
26、11( ),nnkee2.2.3灰色模型的建模步骤n(2)数据变换处理。对级比检验不合格的序列,经过平移变换、对数变换、方根变换等进行变换。n(3)建立gm(1,1)模型n(4)模型检验。n1)残差检验: 为由模型得到的估计值(0)( )xk(0)(0)(0)( )( )( )100%( )xkxkkxk(4)模型检验n一般要求 ,最好 ;一般要求 ,最好 。n2)后验差检验:设 为原始序列, 为模型序列, 为残差序列, 的均值和方差分别0(1() 100%pavg( )20%k( )10%k080%p 090%p (0)x(0) x(0)(0)(0)( )( )( ),q kxkxk q(0
27、)x(0)2(0)211111( ),( )nnkkxxksxkxnn(4)模型检验n 的均值和方差分别为n后验差比值和小误差频率分别为,n(5)预报(0)q2221111( ),( ( ) ,nnkkqq ksq kqnnnn21scs1 ( )0.6745 pp q kqs的均值和方差分别为,2.2.5实例n1.gm(1.1)模型n某城市道路交通噪声平均级数数据为 (71.1,72.4,72.4,72.1,71.4,72.0,71.6)(1)求级比:)0(x0(0)(0)( )(1)( )kxkxk0(0.9820,1.0000,1.0042,1.0098,0.9917,1.0059)1.
28、gm(1.1)模型n所有 ,可作gm(1,1)建模n(2)对原始数据作一次累加0( )0.7788,1.2840k(1)(0)(1)(1)71.1xx(1)(1)(0)(2)(1)(2)143.5xxx(1)(1)(0)(3)(2)(3)215.9xxx(1)(1)(0)(4)(3)(4)288xxx(1)(1)(0)(5)(4)(5)359.4xxx(1)(1)(0)(6)(5)(6)431.4xxx(1)(1)(0)(7)(6)(7)503xxx1.gm(1.1)模型n构造数据矩阵,b y(1)(1)(1)1(2)(1)(2)107.32zxx(1)(1)(1)1(3)(2)(3)179.
29、72zxx(1)(1)(1)1(4)(3)(4)251.952zxx(1)(1)(1)1(5)(4)(5)323.72zxx(1)(1)(1)1(6)(5)(6)394.42zxx(1)(1)(1)1(7)(6)(7)467.22zxx1.gm(1.1)模型107.31179.71251.951323.71359.41467.21b72.472.472.171.472.071.6y172.6572696()0.00234379ttab bb yb 1.gm(1.1)模型n(3)建立模型n白化方程为n取 ,n得时间响应函数(0)(1)( )0.00234379( )72.6572696xkzk(1)(1)0.0023437972.6572696dxxdt(1)(0)(0)(1)71.4xx1.gm(1.1)模型(1)(1)xk (1)(0)akbbxeaa0.00234379ke=-30928.85259 +30999.95259 (4)求生成序列 及模型还原值令, ,6,由上面的时间响应函数计算 ,取 (1)(1)xk (0)(1)xk 5 , 4 , 3 , 2 , 1k(1) x(1)(0)(0)(1)(1)(1)71.4xxx1.gm(1.1)模型n由 ,取 ,7,得(5)模型检验见表5表5 gm(1,1)模型检验表(0)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB31/ 540.3-2013重点单位消防安全管理要求第3部分:展览场馆
- (4篇)高中未来三年规划范文合集
- 株洲市荷塘区2025年八年级《语文》上学期期末试题与参考答案
- 2025年中国臂架式泵车行业市场规模及未来投资方向研究报告
- 微信小程序电商代运营及数据分析服务协议
- 生物酶制剂技术许可与生物制品产业合作合同
- 网店迁移手续与知识产权保护服务协议
- 演员参演舞台剧合同补充条款
- 小学毕业典礼活动方案-剩下的话留给盛夏
- 2025年中国办公室RTA家具行业市场前景预测及投资价值评估分析报告
- 2025年湖北省初中学业水平考试地理模拟卷(三)(学生版)
- 2025届江苏省南京市南京师范大学附属中学高三下学期“扬帆起航”数学试题
- 2025年福建省厦门市思明区厦门第一中学初三5月二模试题英语试题含答案
- 食品行业销售助理岗位职责
- 八省联考陕西试题及答案
- 货物破损回复函
- 3“贝”的故事 课件
- 消防防汛知识培训课件
- Unit2 What time is it B let's talk and learn(说课稿)-2023-2024学年人教PEP版英语四年级下册
- QC实验室5S现场管理
- 管制刀具校园安全
评论
0/150
提交评论