八年级数学上册3.4全等三角形的判断(4)——边边边教案湘教版【教案】_第1页
八年级数学上册3.4全等三角形的判断(4)——边边边教案湘教版【教案】_第2页
八年级数学上册3.4全等三角形的判断(4)——边边边教案湘教版【教案】_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、用心 爱心专A-1 -教学目标2会用三角形的判定方法-边边边定理判断三角形全等;3能根据问题的条件在“ASA,“AAS,“SAS,“SSS中选择合适的定理判断三角形全 等。4会利用三角形的性质判断线段和角度相等。重点和难点重点:“SSS定理的探索过程和应用。难点:“SSS定理的应用。教学过程一创设情境,导入新课1判断三角形全等你学习了哪些方法?(SAS ,AAS ASA )我们知道如果两个三角形有三条边和一个角对应相等时,如果角是两边的夹角,这两个三角形就全等,如果角是其中一条边的对角,这两个三角形不一定全等,如果两个三角形 有两个角一条边对应相等,不管这个角是两条边的夹角还是其中一条边的对角

2、。这两个三角形都全等。2(1)如果两个三角形有三个角对应相等,这两个三角形全等吗?为什么?(交流)交流后教师举例:老师的等腰直角三角板和你们的三角板等腰直角三角板有三个角对应相等,但不全等。(2)如果把三个角对应相等改为三条边对应相等,这两个三角形还全等吗?这节课我们来探索这个问题。板书课题 全等三角形的判定(4)-边边边二合作交流,探究新知1边边边定理的探索:(1) 提出问题:在厶ABCDABC中,AB=AB,AC=AC,BC=BC,那么(2) 分析问题:A3.4全等三角形的判断(4)边边边1探索全等三角形的判定方法边边边定理;要使这两个三角形全等,关键是需要什么条件?B用心 爱心 专心(一

3、个角对应相等,如/C=zC)探索问题:把厶ABC平移,使AB和AB重合,然后/C,直接判断困难,请你连接CC思考:/1与/2,/3与/4有什么关系?为什么?由此 你发现了什么?(3)归纳:边边边定理:有三边对应相等的两个三角形全等(简写成:“边边边”或“SSS)2边边边定理的应用三角形的稳定性同桌的两位同学能完成下面的作图吗?各作一个边长为们不全等,如果能完成就试试看,如果不能完成,就说明理由。边长对应相等的两个三角形一定全等,所以不能完成。由此看出,当三角形的边长一定时,这个三角形的形状和大小也固定不变。这个性质 叫三角形的稳定性。这个性质在生产和生活中有广泛的应用,你发现过吗?三应用新知,

4、巩固提高1边边边定理的应用例1已知,AB=DC,AD=BC试问:/B与/D相等吗?考考你:1女口图AD=EF,DC=BE,AB=CF试问:(1)/D=/E吗?(2)DC/ BE吗?2如图,四边形ABCD中,AD=BC,AB=D(试问:(1)-2 -B把厶ABC沿着AB作轴反射,要判断/C=3cm,4cm,6cm的三角形,使它F用心 爱心 专心-3 -/D=ZE吗?(2) AD/BC吗?例2如图5,D是AB边上的中点,将:ABC沿过D的直线叠,使点A落在BC上F处,若NB =50”,则N BDF =_度2选择合适的全等三角形的判定定理例3(2008年内江市)如图,在ABC中,点E在AB上,点D在BC上,BD =BE,/BAD =Z BCE,AD与CE相交于点F,试判断AFC的形 状,并说明理由.3添加适当的辅助线例4已知:如图,AD=BC,AC=BD求证:OD=OC四课堂练习,巩固提高P 82,1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论