数独的解法与技能_第1页
数独的解法与技能_第2页
数独的解法与技能_第3页
数独的解法与技能_第4页
数独的解法与技能_第5页
免费预览已结束,剩余113页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数独的直观式解题技巧直观法概说、才亠 、, 刖言数独这个数字解谜游戏,完全不必要用到算术!会用到的只是推理与逻辑。刚开始接触数独时,即使是只 须用到"基础摒除法“及"唯一解法“技巧的简易级谜题, 就已可让我们焦头烂额了,但是随着我们深陷数独的迷人世界之后,这类简易级的数独谜题必定在、进阶到更难的游戏后,短时间内难再使我们获得征服的满足。于是,当我们逐步深入 我们将会需要发展岀更多的解谜技巧。虽然最好的技巧便是我们自己发现的窍门, 样我们很容易就能记住它们,运用自如,不需要别人来耳提面命。但是如果完全不去观摩学习他人发展 岀来的技巧,而全靠自己摸索,那将是一个非常坚苦的挑战,

2、也不是正确的学习之道!所以让我们一齐来探讨数独的解谜方法吧!数独的解谜技巧,刚开始发展时,以直观法为主,对于初入门的玩家来说,这也是一般 人 较容易理解、接受的方法,对于一般报章杂志及大众化网站上的数独谜题而言,如 果能灵活直观法的各项 法则,通常已游刃有余。直观法详说直观法的特性:1.不需任何辅助工具就可应用。所以要玩报章杂志上的数独谜题时,只要有一枝 笔就可以开始了,有人会说:可能需要橡皮擦吧?答案是:不用!只要你把握数独游戏的填制原则:绝不猜测。灵活运用本站所介绍的直观填制法,确实可以不必使用橡皮擦。2.从接到数独谜题的那一刻起就可以立即开始解题。3.初学者或没有计算机辅助时的首要解题方

3、法。4.相对而言,能解岀的谜题较简单。直观法的主要的技巧:1.基础摒除法。2.唯一解法。3.区块摒除法。4.唯余解法。5.单元摒除法。6.矩形摒除法。7.余数测试法。基础摒除法、Z 、,刖言对第一次接触数独游戏,接受了19的数字在每一行、每一列、每一个九宫格都只能岀现一次的规则后,开始要解题的玩家来说,基础摒除法绝对是他第一个想到及使用的方法,十分的自然、也十分的简易。如果能够细心、系统化的运用基础摒除法,一般报章杂志或较大众化的数独网站上的数独谜题几乎全部可解岀来。只不过大部分的玩家都不知如何系统化的运用基础摒除法罢了!J基础摒除法虽然简单,但在实际应用时,仍然可分成三个部分:1.行摒除:因

4、为同一行不能有两个相同的数字,所以当某个数字已在某行中岀现 时,该行再填入该数字的可能性就应该被摒除掉。2.列摒除:因为同一列不能有两个相同的数字,所以当某个数字已在某列中岀现时,该列再填入该数字的可能性就应该被摒除掉。3.九宫格摒除:因为同一个九宫格不能有两个相同的数字,所以当某个数字已在某个九宫格中岀现时,该九宫格再填入该数字的可能性就应该被摒除掉。J在运用基础摒除法来寻找解的过程中,其实也可分为三个部分:1.寻找九宫格摒除解: 找到了某数在某一个九宫格可填入的位置只余一个的情形;意即找到了 该数在该九宫格中的填入位置。2.寻找列摒除解:找到了某数在某列可填入的位置只余一个的情形;意即找到

5、了该数在该列中的填入位置。3.寻找行摒除解:找到了某数在某行可填入的位置只余一个的情形;意即找到了该数在该行中的填入位置。不过不要说是初入门者,即使是很多未接受过本讯息者,也常常会遗漏了行、列摒除解的寻找。 对一些粗心的玩家来说,即使是九宫格摒除解也常被跳着做,所以解起题来就会感到不是十分顺手。九宫格摒除解的寻找直到解完全题同样要九宫格摒除解的系统寻找是由数字1开始一直到数字 9,周而复始,或无解时为止;每个数字又需从上左九宫格起,直到下右九宫格,周而复始,不断重复到解完全题或无解时为止。3S76 i54192g131697543887! 9641&<图1>以 图1的解题为

6、例:先从数字1开始,并由上左九宫格起寻找九宫格摒除解,会影响上左九宫格的数字,一定存在第 1列第3列以及第1行第3行如2 的绿色区域。本区域已存在的数字1共有两个,它们分别存在(2, 9)及(5, 1);其中(2, 9)数字的列摒除,将摒除第2列其它宫格再填入数字1的可能,因为依照规则每一列只能1 3 :8ifE2nICl29131637543887! 9641&<图2>有一个数字1,如果再在本列 填入数字1,那么本列就会有两个1 了。同理,(5,1)字1的行摒除,将摒除第1行其它宫格再 填入数字1的可能,其示意图如 图3。3S7554192g13697S438379641

7、6<图3>对上左九宫格的摒除仅能到此地步,我们可以很容易的发现:本九宫中还有3个宫格不在被摒除的区域中,意即:这3个宫格都仍有可能填入数字1,依不可猜测的原则,本九宫格暂时不予处理。接下来我们要尝试在上中九宫格寻找是否有九宫格摒除解1 :会影响上中九宫格的数字,一定存在第 1列第3列以及第 4行第6行。本区域已存在的数字有3个,它们分别存在(2, 9)、(4, 6)及(9, 5),其摒除的范围示意图如< 图4>。3876 I5419291 '3137S43837 '96416<图4>同样的,我们可以很容易的发现:本九宫中还有 2个宫格不在被摒

8、除的区域中,意即:这2个宫格都仍有可能填入数字1,依不可猜测的原则, 本九宫格一样暂时不予处理。接下来的上右、中左、中央九宫格都已有数字1 了,所以不必再找数字1该填入的宫格。所以现在需要处理的九宫格轮到了中右九宫格,依上法对此九宫格进行的摒除示意图如< 图 5> :387554192913169764383796415图5>我们可以很容易的发现:本九宫中只剩宫格(6, 8)不在被摒除的区域中,意即:在这个九宫格中只剩这个宫格仍有可能填入数字1,所以本九宫格的数字1就只能填到这里了;这时我们称:在(6, 8)有九宫格摒除解在一般的解题技巧教导中(也包含尤怪之家先前的作品),把

9、前面的徒劳寻找都省略不提,直接就告诉玩家:在(6, 8)有九宫格摒除解1。当然这是为了篇幅考量,把全部过程都写岀来将多岀很多篇幅,但也将造成初学者的挫折感,他们会以为计算机或已入门找了老半天才找到一者的功力实在太高强了,一眼就能看岀解在哪里!自己却很笨, 个解;其实速度可能有差,方法及过程则是一样的。重复前面的方法,我们可以发现数字 1、2都没法找到九宫格摒除解了。 轮到数字 3时, 也要一直到 下左九宫格才能找到 (8, 2)有九宫格摒除解 3女n 图6、然后在(9, 9) 有九宫格摒除解 3如 图7 :38755419291316375413吕37! 9641538765419291391

10、67S4138879641,5<图6><图7>在这里要提醒初学者注意的是:虽然我们从上左九宫格开始,到现在的下右九宫格,已 将所有的九宫格都 找过一遍了!但因为中间曾经在某些宫格填入我们找到的数字解,我们遗漏掉一些可以马上找到的解。例如我们又所以一定要再从头找一遍,否则会让可找到在(6, 1)有九宫格摒除解3如 < 图8> ;然后在(5, 6)也有九宫格摒除解3如 < 图9> :38769541921316375413887! 9641! 5:3S'7654192913163-7543887! 96415<图8><图9&

11、gt;同样的,因为在本循环又曾找到一些解,所以还要再找一次,确定已没法找到九宫格摒 除解3 了,才能换成数字4继续寻找下去。特别用图示的方式呈现,在以上的过程中,为了标示已存在的数字对九宫格的摒除状况,有些玩家就发岀了 这样的疑问:在解报章杂志上的数独题目时,是否要用铅笔在谜题上画线,以找岀摒除解呢?其实不必啦!玩家们只要稍微练习一下,至多只要空手在谜题上比划比划,就可以看岀哪些宫格已被摒除,进而找岀摒除解的。行、列摒除解的寻找和九宫格摒除解的寻找一样,列摒除解的系统寻找是由数字开始一直到数字9 ,周而复始,直到解完全题或无解时为止;每个数字又需从第列起,直到第 9列止,周而复始,同样要不断重

12、复到解完全题或无解时为止。同理,行摒除解的系统寻找也在 < 图11 >中,(9,1)有一个摒除解 3,你可以看岀来吗?是一样的作法。大部分的人都会十分习惯应用九宫格摒除解的寻找,而完全忽略了行、列摒除解的寻找;对某些题目而言或许可行,但对某些题目而言,不运用此二法可是行不通的哦!大家已有九宫格摒除解的寻找经验了,所以尤怪就不再把无效的找寻过程秀岀来,而直接展示成功的例子啦,不过直接秀岀来又太没意思了,就当做是做个小小的测验吧,以下的范例都先展示目前题型,并告诉大家在某个宫格有何解,请大家找找看,如果鼠标光标移到图找到了,要核对摒除示意图,或者找不到,要参考摒除示意图,请将 块上就可

13、显现啦!在 < 图10 >中,(5, 5)有一个摒除解 7,你可以看岀来吗?8761r2737581b26949852&152769235563676< 图 10>8761627真376812g94938(52615276923556S516< 图 11>二 在 图12 中,(7,1)有一个摒除解 1,你可以看岀来吗?961J_43462'872495335267中398493616-< 图 12>在 图13 中,(6, 4)有一个摒除解 6,你可以看岀来吗?42312635g93b64&365859553I 7! 269

14、621< 图 13>在 图14 中,(1,3)有一个摒除解 7,你可以看岀来吗?61337463?351 e761449971563421S6< 图 13>唯一解法、Z 、,刖言直观法的根本是基础摒除法,唯一解法其实只可算是基础摒除法的特例,只因其成立条件十分特殊明确,可以几乎不花脑筋就填岀解来,所以特别独立为一法,但有些人是 完全不加理会的。唯一解详说当数独谜题中的某一个宫格因为所处的列、行或九宫格已填入数字的宫格达到8个时,二 当某列已填入数字的宫格达到8当某行已填入数字的宫格达到8个时,所剩宫格唯一能填入的数字就叫做行唯一解;当某个九宫格已填入数字的宫格达到8个时

15、,所剩宫格唯一能填入的数字就叫做九宫那么这个宫格所能填入的数字,就只剩下那个还没岀现过的数字了。个时,所剩宫格唯一能填入的数字就叫做列唯一解;格唯一解。35I.9 I15716452e7b i47g1 J3257I 8516211852G-19图1 (5, 9)岀现列唯一解 6 了图1是岀现列唯一解的例子,请看第 5列,由(5,1)(5,8)都已填入数字了,只剩(5,9)还是 空白,此时(5,9)中应填入的数字,当然就是第 5列中还没岀现过的数字了! 请一个个数字核对一下,哦!是数字 6还没岀现过,所以(5,9)中该填入的数字就是数字6 了,这时我们说:(5, 9)有列唯一解 6。359458

16、157164I 552e7亘47£91325T7551748625186;52GS0图2 (7, 1)岀现行唯一解9 了图2是岀现行唯一解的例子,请看第 1行,除了宫格(7,1)外都已填入数字了,此时(7,1)中应填入的数字,当然就是第 1行中还没岀现过的数字9 了!这时我们说:(7, 1)有行唯一解 9。359 I456157I1645&21878476313265795174862159185S2Alac $-1 ,9<图3> (7, 2)岀现九宫格唯一解 3 了(7,2)外都已填入数三 < 图3>是岀现九宫格唯一解的例子,请看下左九宫格,除了宫格

17、3 了!这字了,此时(7,2)中应填入的数字,当然就是下左九宫格中还没岀现过的数字 时我们说:(7, 2)有九宫格唯一解广二仔细想想:以上的列唯一解其实也可看成是列摒除解、行唯一解也可看成是行摒除解、九宫格唯一解也可看成是九宫格摒除解,不是吗?不过9个宫格已填了 8个,这样的情况太特殊、太容易辨认了,所以独立岀来也无可厚非啦!区块摒除法、Z 、,刖言V 区块摒除法虽属于进阶的技巧,但已入门的玩家在解题时可以很容易的配合着基础摒除法使用,增加不少 找到解的机会,将感觉顺手多了。所以即使是最简易级的题目,已入门的玩家一样可在解题时应用此法,并非在基础摒除法已找不到解时才让此法上阵。本网页中的很多例

18、子,如果坚持使用基础摒除法,其实仍可找到其它数字解,但因机缘凑巧,恰可用上区块摒除法找到解,所以仍拿来当做例子啦! 电什么是区块呢?1. 对列而言,就是分属三个不同九宫格的部分。在下图中,我们分别用不同的颜色来标示列的三个区块:2. 对行而言,也是分属三个不同九宫格的部分。在下图中,我们分别用不同的颜色来标示行的三个区块:我们分3. 对九宫格而言,就是分属三个不同列或三个不同行的部分。在下图中, 别用不同的颜色来标示九宫格的三个区块:为了说明及学习的方便,尤怪将区块摒除法分为4个不同的型式,但在实际应用时,即使玩家不知此分类,也可以很容易的顺着区块的所在及方向而做岀正确的摒除。1.九宫格对行的

19、区块摒除:某数字在九宫格中的可填位置仅存在其中一个区块时,因为某数一定会在本区块,所以包含该区块的行,可将数字填入另两个区块的可能性将被摒除。2.九宫格对列的区块摒除。某数字在九宫格中的可填位置仅存在其中一个区块时,因为某数一定会在本区块,所以包含该区块的列,可将数字填入另两个区块的3.可能性将被摒除。行对九宫格的区块摒除。某数字在行中的可填位置仅存在其中一个区块时,因为某数一定会在本区块,所以包含该区块的九宫格,可将数字填入另两个区块 的可能性将被摒除。4. 列对九宫格的区块摒除。某数字在列中的可填位置仅存在其中一个区块时,因为某数一定会在本区块,所以包含该区块的九宫格,可将数字填入另两个区

20、块 的可能性将被摒除。区块摒除法虽属于进阶的技巧,但已入门的玩家在解题时可以很容易的配合着基础摒除法使用,增加不少 找到解的机会,将感觉顺手多了。所以即使是最简易级的题目,已入门的玩家一样可在解题时应用此法,并非在基础摒除法已找不到解时才让此法上阵。本网页中的很多例子,如果坚持使用基础摒除法,其实仍可找到其它数字解,但因机缘凑巧,恰可用上区块摒除法找到解,所以仍拿来当做例子啦!九宫格对列、行的区块摒除九宫格摒除解的系统寻找是由数字1开始一直到数字 9,周而复始,直到解完全题或无解时为止;每个数字又需从上左九宫格起,直到下右九宫格,周而复始,同样要不断重复到解完全题或无解时为止。使用区块摒除法,

21、只要在九宫格摒除解的系统寻找时,注意是否有区块摒除的成立条件即可,当区块摒除的条件具备了,就等于多了一个摒除线,找到解的机会自然多了一点,将感觉顺手多了。例如在 < 图1>中,如果不使用或不会使用区块摒除法,是找不到1的九宫格摒除解的,但如果用上了区块摒除法,将可找到四个数字1的填入位所以可将第7列另两个区块填入数字1的可能性摒除。置哦:在 < 图1 >中:先从数字1开始寻找九宫格摒除解,当找到中左九宫格时,由于(3, 2)、574i S25185919983554946251<图1>(4, 5)的摒除,将使得数字1可填入的位置只剩下格都必须填入数字1,既然

22、中左九宫格的数字 1(5, 1)及(5, 3),因为每一个九宫 一定会填在 (5, 1)(5, 3)这个区 块,那表示包含这个区块的第5列,其另两个区块就不能填入数字1 了,因为同一574625185919983564 1346! 251<图2>第5列的区块摒除,配合(4, 5)及(9, 7)的基础摒除,使得(6, 8)岀现了中右九宫格摒除解了。只找到一个还不过瘾,可填入的位置只剩下既然下左九宫格的数字当搜寻到下左九宫格时,由于(3, 2)、(9, 7)的摒除,将使得数字1(7, 1)及(7, 3),同理,因为每一个九宫格都必须填入数字1 一定会 填在(7, 1)(7, 3)这个区

23、块,那表示包含这个区574i 62! 5185919983564346! 251<图3>块的第7列,其另两个区块就不能填入数字1 了,因为同一列中只能有一个数字1,57462515919983564946! 251<图4>第7列的区块摒除,配合(4, 5)及(9, 7)的基础摒除,使得(8, 6)岀现了中下九宫格摒除解了。574S25135919T83564946:261<图5>找到了 (6, 8)及(8, 6)两个摒除解之后,因谜面的数字已有改变,所以循例应回头再找一遍,相信大家一定 可以很容易的找到另两个九宫格摒除解:(1,4)、(2, 9)。九宫格对行

24、的区块摒除和九宫格对列的区块摒除同理,只不过九宫格对列的区块摒除是数字仅岀现在九宫格的横向区块,所以受到影响的就是列;而九宫格对行的区块摒除是数字仅岀现在九宫格的纵向区块,所以受到影响的就变成是行而已。图6是一个九宫格对行的区块摒除之例子。你可以看岀下左九宫格的数字9应该填在什么位置吗?(6, 3)这个区块,那表示包含这个区块的第3行,其另两个区块就不9 了,因为同一行中也只能有一个数字9,所以可将第 3行另两个区块填入数字9的可能性摒除。6931456893764245S455847S562一3g<图6>在 图6 中:由于(5, 8)的摒除,使得数字9在中左九宫格可填入的位置只剩

25、下(4,3)及(6, 3),因为每一个九宫格都必须有数字9,既然中左九宫格的数字9 一定会填在(4, 3)能填入数字S931宅56893745245455847956239<图7>第3行的区块摒除,配合(2, 2)、(7, 6)及(9, 9)的基础摒除,使得(8,1)岀现了下左九宫格摒除解 9 了。5391568937*-1146245y£5S847956239<图8>看过了以上的例子后,首先要提醒大家,前面已提过区块摒除需机缘凑巧,并非随手可得哦!大部分的时候,虽然发现了区块摒除的条件,但却是空包弹,一样找不到摒除解!例如:在 < 图1 >的上右

26、九宫格中,由于(3, 2)、(9, 7)的摒除,使得上右九宫格的数字1只岀现在(1, 9)及(2, 9),符合区块摒除的条件,但配合现有的数字 1做摒除后,并无法找到任何摒除解。所以当找到区块摒除的条件时,并不必太高兴!574625186919983554346251<图9>行、列对九宫格的区块摒除般而言,九宫格对行、列的区块摒除是容易被发现和运用的,因为一般人常把注意力放在九宫格摒除解的 寻找上,所以找到的自然是九宫格对行、列的区块摒除条件;而行、列对九宫格的区块摒除成立条件需配合 行、列摒除解的寻找,所以常被疏忽了。不过尤怪认为:解题本以增加生活乐趣为上,如果可用简单的方法解题

27、,何必强要使用困难的方法呢?配合一般人不到不得已不去寻找行、列摒除解的心态,下面这个例子和前面的例子就不同了,如果不使用或不会使用行、列对九宫格的区块摒除,是找不到8的行摒除解的, 请先解解看, 然后再看后面的说明:365719|321§2152'13&8538116§373598% !17436513< 图 10>X'在本例中:由于(5, 5)、(7, 7)的摒除,使得数字8在第2列可填入的位置只剩下(2, 2)及(2, 3),因为每一列都必须有数字8,既然第(2, 3)这个区块,那表示包含这个区块的上左九宫格, 了,因为同一个九宫格中

28、也只能有一个数字数字8的可能性摒除。2列的数字8 一定会填在(2,1)其另两个区块就不能填入数字8所以可将上左九宫格另两个区块填入367,1993215215213&|53165735981746513< 图 11>于是上左九宫格的区块摒除,配合(5, 5)、(7, 7)的基础摒除,使得(6,1)岀现了第1行摒除解8 了。1 .-*57199321冷152"113&38116.J1 37n9817436&13< 图 12>F面这个例子更困难一点,必须先找到九宫格对行、列的区块摒除,然后再利用行、列对九宫格的区块摒除,来找到8的行摒除解,

29、请先解解看,给自己一点挑战,然后再看后面的说明:在本例中:由于(1, 2)及(2, 2)(3, 6)、(7, 1)的摒除,使得数字8在上左九宫格中可填入的位置只剩下,符合了九宫格对行的区块摒除之条件,所以可把第2行其它区块填入数字8的可能性摒除掉。3146,976446I 625414917134787464175g3a4< 图 13>31469了|644662541491V34787 "541753394< 图 14>接下来:利用上左九宫格对第2行的区块摒除,并配合(7, 1)、(9, 5)的基础行摒除,使 得数字8在第5列中可填入的位置只剩下 (5, 8)

30、及(5, 9),符合了列对九宫格的区块摒除之条件,所以可把中右九宫格其它区块填入数字8的可能性摒除掉。3II #4697644ei 6254149173478 :7451759厂33»4 I< 图 15>最后,利用第 5列对中右上左九宫格的区块摒除,并配合 (7, 1)、(9, 5)的基础列摒除, 使得数字 8在第7行中可填入的位置只剩下一个,意即找到第7行的行摒除解 8314696448S-51 q14917134787641Z5936f4多重区块摒除多重区块摒除是必需同时使用2个以上的区块摒除才能找到解的情况。下面这个例子就必需同时运用一个九宫格对列的区块摒除及列对九

31、宫格的区块摒除,才能找到 5的行摒除解。请先解解看,给自己一点挑战,然后再看后面的说明:< 图 16>96734359351265593442 1962727ed< 图 17>-在本例中:由于(2, 5)、(4, 7)的摒除,使得数字 5在中央九宫格中可填入的位置只剩下(5, 4)及(5, 6),符合了九宫格对列的区块摒除之条件,所以可把第5列其它区块填入数字5的可能性摒除掉。96734吕59351265593442962727e9< 图 18>二 同时:由于(2, 5)、(4, 7)及(3, 9)的行摒除,使得数字 5在第9列中可填入的位置只剩下(9, 1

32、)及区块填入数字(9, 3),符合了列对九宫格的区块摒除之条件,所以可把下左九宫格其它 5的可能性摒除掉。96734占59351265693442962727e! 9< 图 19>-于是,利用第除,使得数字5列及下左九宫格的区块摒除,并配合(2, 5)、(4, 7)及(3, 9)的基础列摒5在第2行中可填入的位置只剩下一个,意即找到第2行的行摒除解5 了。9e734n c69351265693442 ,962727e< 图 20>三下面这个例子就更有趣了,请看< 图21 >,目前谜面上一个数字7都没有,但尤怪要说:在上左九宫格有一个九宫格摒除解7,你是否能找

33、岀来呢?54242136:9j&863296e24154615I 2935< 图 21>三 首先,因为上右九宫格的数字7只能填在(1, 7)(1, 9)这个区块,所以可以用九宫格对列的区块摒除,将第1列其它区块填入数字7的可能性摒除掉。542II423e9363?l296824154615,2I 93' 5< 图 22>当第一列的(1,1)(1, 6)填入数字7的可能性被摒除之后,因为上中九宫格的数字7将第3列就只能填在(3, 4)(3, 6)这个区块,所以也可以用九宫格对列的区块摒除,其它区块填入数字7的 可能性摒除掉。于是,同时利用第 1列及第5列的

34、区块摒除,使得数字7在上左九宫格中可填入的位置只剩下一个,意即找到上左九宫格的九宫格 摒除解7 了。5442369二.3e32966412546152! 935< 图 23>唯余解法、Z 、,刖言唯余解法的原理十分简单,但是在实际的解题中,非常不容易辨认。由于唯余解非常不容易辨认,所以一般的报章杂志及较大众化的数独网站,通常会将需要用到唯余解法的数独谜题归入较高的级别。但另一种以候选数法为分级根据的网站, 则会把这类的谜题放到较低的级别中。唯余解详说当数独谜题中的某一个宫格,因为所处的列、 行及九宫格中,合计已岀现过不同的 8个数字,使得这个宫格所能填入的数字,就只剩下那个还没岀现过的数字时,我们称这 个宫格有唯余解。12753492449125857126&3521图1 (8, 6)岀现唯余解了图1是岀现唯余解的例子,请看(8, 6)在的第8列,共岀现了六个数字;接下来再看(8, 6)所在的第6行,共有2、4、9三个数字;而(8, 6)所在的下中九宫格,还包含了 1、6、2三个数字;所以(8, 6)所处的列、行及九宫格中,合计已岀现过 1、2、3、4、5、6、8、9共8个不同的数字;依照数独的填制规则,同一列、同一行及同一个九宫格中,每一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论