




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、液体粘滞系数的测量与研究一实验目的1了解用斯托克斯公式测定液体粘滞系数的原理,掌握其适用条件。2学习用落球法测定液体的粘滞系数。3熟练运用基本仪器测量时间、长度和温度。4 掌握用外推法处理实验数据。实验仪器液体粘滞系数仪、螺旋测微器、游标卡尺、钢板尺、钢球、磁铁、秒表、温度计。三实验原理当物体球在液体中运动时,物体将会受到液体施加的与其运动方向相反的摩擦阻力的作 用,这种阻力称为粘滞阻力,简称粘滞力。粘滞阻力并不是物体与液体间的摩擦力,而是由 附着在物体表面并随物体一起运动的液体层与附近液层间的摩擦而产生的。粘滞力的大小与 液体的性质、物体的形状和运动速度等因素有关。根据斯托克斯定律,光滑的小
2、球在无限广延的液体中运动时,当液体的粘滞性较大,小球的半径很小,且在运动中不产生旋涡,那么小球所受到的粘滞阻力f为(1)式中d是小球的直径,V是小球的速度,为液体粘滞系数。就是液体粘滞性的度量,与温3 vd度有密切的关系,对液体来说,随温度的升高而减少(见附表)。本实验应用落球法来测量液体的粘滞系数。小球在液体中做自由下落时,受到三个力的作用,三个力都在竖直方向,它们是重力 rgV、浮力r0gV、粘滞阻力f。开始下落时小球运动的速度较小,相应的阻力也小,重力大于粘滞阻力和浮力,所以小球作加速运动。由于粘 滞阻力随小球的运动速度增加而逐渐增加,加速度也越来越小,当小球所受合外力为零时,趋于匀速运
3、动,此时的速度称为收尾速度,记为V0。经计算可得液体的粘滞系数为(2)o)gd218Vo可见,只要测得Vo,即可由(2)式得到液体的粘滞系数。但是注意,上述推导包括(1)、(2)式都在特定条件下方才适用(见原理的第一段黑体字部分),通过对实验仪器和实验方 法的设计,这些条件大多数都可以满足或近似满足(结合本实验所用仪器和实验步骤,思考 一下哪些条件被满足,是如何做到的),唯独“无限广延”在实验中是无法实现的。因此,为 了准确测出液体的粘滞系数,我们需要进一步对实验进行设计,下面将分别在实验上采用外 推法和在理论上对计算公式进行修正进行测量,这些方法体现了实验手段和理论手段在物理 实验中的作用和
4、特点,同时反映出针对同一个问题如何在实验中层层深入,不断提高测量结 果的准确程度,而这正是物理学实验的魅力所在。四实验设计外推法的实验设计与测量4.1.1横向“无限广延”之外推用上述落球法测量出来的收尾速度 v0与液体尺度有关,那么我们不妨在实验中就v0对液体尺度的依赖关系进行定量研究,如果该依赖关系存在规律,则有可能对我们的测量带来帮 助或指引。由于上述讨论中对液体的形状没有做具体要求, 我们在实验中采用试管作为容器,这样得到具有轴对称性的液柱,于是我们要研究的就是液柱的尺度大小对Vo的影响。为简化A、测量,可先固定液柱的高度,改变液柱横截面积,这可以用一组直径不同的试管来实现(见 图1)。
5、将这些试管装上同种待测液体,安装在同一水平底板上,每个管子上都用两条刻线B标出相等的间距,记为h (上刻线A与液面间应留有适当距离,使得小球(用直径最小的球)F落经过A刻线时,可以认为小球已进入匀速运动状态)。依次测出小球通过管中的两刻线 A、B间所需的时间t,各管的直径用D表示,则通过大量的实验,我们就可以得到 t与D之间的关系。已有的数据表明,t与1/D成线性关系。即以t为纵坐标轴,以1/D为横坐标轴,根据 实验数据可以作出一条直线(动手画画看!)。这是个好消息,因为如果延长该直线与纵轴相 交,其截距对应的是1/D = 0时的t。,而1/D = 0正好对应D? Y,于是我们用这种方法就可以
6、外推出在横向“无限广延”的液体中,小球匀速下落通过距离h所需的时间t0。所以有(3)将(3)代入(2),即可求出液体的粘滞系数h :( 18h2o)gd to(4)若式中各量均采用国际单位,则h的单位为帕?秒,记为 Pa>s ,1Pa 冷= 1kg/(m %。h h(6)误差计算:totoDh =E:h最终测量结果表示成:(8)4.1.2纵向“无限广延”之外推为满足在纵向上“无限广延”这一条件,则小球的收尾速度V还应修正为Vo (1 k ¥)其中,k为常数,I为液体的深度。将(3)式代入(8)式,可得t0h khd 1 V V I(9)(9)式中,V、h、k及d均为常量,故to
7、与1满足线性关系。I(10)(11)li时,,当各管中的液体深度均为l2、I3,D 时,小球匀速下落距离h所需的时间to2,to3,作to f图,并进行线性拟合,延长直线与纵轴相交,纵截距为to,则to就是当D(横向为无限广延)(纵向为无限广延)时,小球匀速下落h所需要的时间,故根据(9)式,如果向各圆管中加入适量的液体,在保持各圆管中的液体深度均为利用多管落球法之D时外推出的小球匀速下落距离h所需的时间to1hV to将(10)式代入(2)式,可得o)gd2 to18h(11)式即为当液体在横向和纵向均满足“无限广延”条件下测量液体粘滞系数的计算公式。4.1.3小球半径无限小之外推由于在实验
8、中采用玻璃圆筒作为容器盛放蓖麻油,这与斯托克斯定律第二假定所要求的“在无限广延的媒质中”的环境不同。由流体力学可知:小球在容器中的下降速度要比在广 延液体中的下降速度小,两者相差一个修正因子。密立根通过实验得到的修正因子为:(12)rr(12.4-)(1 3.3-)式中R和r分别为容器和小球的半径,I为筒中液体的深度。可见,对同样大小的球而言,圆筒 内半径F越小,液体的深度I越小,修正因子 越大;同样,对同一圆筒及一定深度的液体, 球的半径r越大, 就越大。于是,可以想象,当小球的直径趋于零时,器壁对小球的影响亦 将趋于零。此时,量筒中的液体相对小球来说,也就可理解为“无限广延”的液体了。但是
9、 直径趋于零的小球是无法实现的,此时如果运用外推方法,就可以帮助我们实现这种理想的状况。由于液体的深度比量筒的直径大得多,在不考虑量筒的深度对落球的影响时,修正因r(12.4-)(1 2.4碁)(13)则,液体粘度 与量筒直径D及小球直径d有如下关系0(1(14)式中0是液体的真实粘滞系数,是用落球法测量得到的粘滞系数。从(14)式可看出, 和d成线性关系,因此可以用不同直径的小球测出若干个(此时,D和I尽可能大),并以为纵轴,d为横轴作出 一d图线,再进行线性外推。当d0时,直线在纵轴上的截距就是液体真实的粘滞系数。理论修正4.2.1边界条件的理论修正上述外推法虽然能比较准确地测量出液体的粘
10、滞系数,但小球的运动状态也会对测量结果产生影响,得到的测量结果仍存在未知误差。那么有无更好的方法来解决这个问题呢让我(15)们从头开始换个方式思考,既然容器的边界效应对球体受到的粘滞力有影响,可否一开始就从理论上将液体尺度的影响因素考虑进来实际上是可以的,通过流体力学的分析可以证明,在其他条件不变的前提下,对于本实验中采用的是具有轴对称性的柱状液体,不考虑小球运动状态的影响时,小球在其中所受粘滞力公式(1)应修正成:rrf 3 vd(1 2.4 詁(1 3.3;)同样用落球法进行测量,粘滞系数应相应地表示成:0 gd 2t ?18h (12.4d/D)(1 3.3r/l)(16)其中,D为容器
11、内径,I为量筒内待测液体的总高度,r为小球的半径。4.2.2小球运动状态的修正一一雷诺数修正不仅液体的边界条件对小球在其中的运动有较大影响, 物体在均匀稳定液体中的运动实际上还受到雷诺数Re的影响。雷诺数是描述流体运动或物体在均匀稳定液体中运动的一个重要的无量纲参数:Re(17)其中r0是液体密度,v是物体运动速度或流体稳定流速,d是运动物体的线性尺度,对本实验而言即小球直径,h是液体的粘滞系数。雷诺数的大小决定了物体在液体中的运动方式,一般当Re<1 (相当于小尺度物体在低密度、 高粘滞系数的液体中进行低速运动) 时称低雷诺数运动,此时液体中的粘滞力起主导作用,而液体的惯性力可以忽略,
12、运动物体感受到周围液体以层流方式流动;而当Re >1时(相当于大尺度物体在高密度、低粘滞系数的液体中进行高速运动)称物体做高雷诺数运动,此时液体的惯性力作用逐渐增强,尤其是当雷诺数超过某个阈值时(一般Re > 2000)液体中的粘滞力可以忽略,物体感受到周围液体以湍流方式流动,展现出非常复杂的混沌效应。由于雷诺数对物体在液体中的运动影响很大,即便是对小雷诺数下的运动,公式(15)也需要做进一步修正,此时粘滞力在(15)式的基础上还要再乘上一个与雷诺数有关的修正项:f 3 vd(12.4訥 3.3訓為用)(18)由上式可见,当Re较小时,可以只考虑第一级修正,随着Re逐渐增大,需要将
13、第二、第三甚至更多级的修正考虑进来,而当Re31时,公式中的修正项会变得比主项还大, 这表明此时流 体内的运动已经产生质的变化,基于斯托克斯公式的(18)式不再适用。在实际操作中,一般当0.1<&<0.5时我们仅考虑第一级雷诺数修正(为什么),此时粘滞系数计算公式可以写成(试着推导一下)9(19)0 gd t?1?118h (1 2.4d/D)(1 3.3r/l)?(1 2R)(1 wRe)五实验内容1. 液体横向和纵向“无限广延”之外推法测量蓖麻油的粘滞系数提示:采用直径最小的刚球,在不同的液体深度下(约4个深度I值),分别测量4个管子中小球下落液体高度h (15cm左右
14、,具体数据需要测量)所用的时间(选择5-6个刚球在同一个管子中下落,记录每个 小球下落时间,该过程不可打捞落入液体中的刚球,否则会改变液体的流动状态)h所需2. 小球半径无限小之外推法测量蓖麻油的粘滞系数提示:在保证所用管子直径最大和所装液体最深时,利用直径不同的小球测量其在液体中下落高度 的时间。3. 利用理论修正公式(19)测量和计算蓖麻油的粘滞系数提示:管子的直径D最大,液体的深度I最深,小球的半径r最小。六操作说明1 .用螺旋测微器测量小钢球的直径 d (选不同方向测量5次后取平均)。2. 用游标卡尺测量各管子的内直径 D (选不同方向测量5次后取平均)。3 .用钢板尺测量管子上 A、
15、B刻线间的距离h (选不同方向测量5次后取平均)。4. 用镊子将浸润后的小钢球依次从各管子上端液面中心处放入,并用秒表记下小钢球在 管子中A、B刻线间下落的时间t O5.用厘米刻度尺测量各试管内液体总高度I O注意:自行设计数据表格七数据处理要求1.对应于每一个液体深度1,以 t为纵坐标轴,以D为横坐标轴,作出一条直线,延长 该直线与纵轴相交,求截距to,共4张图。2.以t。为纵坐标轴,以1为横坐标轴,作出一条直线,延长该直线与纵轴相交,求截距Ito。3. 利用公式(11)计算粘滞系数h 04. 把利用不同直径的小球测出的若干个值,以 为纵轴,以d为横轴作出 一d图线, 再进行线性外推,求纵截
16、距即为液体真实的粘滞系数。5. 利用所测数据,分别计算各试管内考虑边界条件修正后的粘滞系数h0 (用公式(16) 计算,数据用管子直径D和液体深度I最深,且小球直径d最小的一组数据),并与用外推法(公式(11)测得的h值进行比较,说明本实验中边界条件的理论修正是否有效。6.利用所测数据,估算本实验中小球运动的雷诺数,并根据估算值判断是否需要进行雷 诺数修正,如是,则利用公式(19)计算修正后的m,分别与外推法得到的h和边界条件修 正后得到的h0进行比较,说明本实验中雷诺数修正是否有效。八注意事项1 .待测液体应加注至管子内刻线 A上一定位置,以保证小球在刻线 A、B间匀速运动。2.小球要于管子轴线位置放入。3 .放入小球与测量其下落时间时,眼与手要配合一致。4 .管子内的液体应无气泡,小球表面应光滑无油污。5. 测量过程中液体的温度应保持不变,实验测量过程持续的时间间隔应尽可能短。数据表格设计范例:以液体某一深度I,且小球直径d最小为例。表1小钢球直径d次数12345平均d (mm)d (mm)表2各管子直径D、次数直径(mm).1234平均DiDiD2D2D3D3D4D4次数1234平均距离h (mm)Dh(mm)表3管子上两刻线间的距离表4各个管子中小钢球下落时间次数时间(s)- *12345
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三方协议书报道时间
- 三方协议书怎么填生源地
- 2025设备租赁合同范本(律师版)
- 2025个人借款抵押房产合同模板
- 团队境内旅游合同
- 肠道菌群代谢综合征-洞察与解读
- 宫颈上皮再生机制-洞察与解读
- 2025广西壮族自治区卫生健康委员会机关服务中心招聘第二批编外聘用人员1人考前自测高频考点模拟试题及完整答案详解
- 2025轮胎购销合同
- 伐树免责协议书6篇
- 高考英语读后续写自然景色描写升华句(风+雨+雪+霜+雾)清单
- 建筑师负责制工程建设项目建筑师标准服务内容与流程
- 九年级数学第一次月考卷 北师大版
- 《精护》第六章-精神活性物质所致精神障碍患者的护理
- 与孩子立契约协议书范本
- 姜萍事件全文课件
- 2024全国职业院校技能大赛ZZ060母婴照护赛项规程+赛题
- 特殊天气驾驶安全规范
- 新闻文体的翻译课件
- 西方翻译理论流派划分探索
- 五年级综合实践活动小零食大学问2课件
评论
0/150
提交评论