


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章 绪论1.1课题研究的目的及意义随着工业自动化程度的提高,工业现场的很多易燃、易爆等高危及重体力劳动场合 必将由机器人所代替。这一方面可以减轻工人的劳动强度,另一方面可以大大提高劳动 生产率。例如,目前在我国的许多中小型汽车生产以及轻工业生产中,往往冲压成型这 一工序还需要人工上下料,既费时费力,又影响效率。为此,我们把上下料机械手作为 我们研究的课题。工业机械手是工业物流自动化中上网重要装置之一,是当今世界新技术革命的一个 重要标志。工业机械手是典型的机电一体化产品。工业机械手的产生和推广是社会生产和发展的需要,也是现代生产和科技发展的新 技术产品。工业机械手已经在工业生产、资源开发、
2、社会服务、排险救灾以及军事技术 等方面发挥着愈来愈大的应用。工业机械手的应用和推广已经并将获得极大的效益。例如在机械制造工业、汽车工 业等生产中采用电焊、弧焊、喷漆等机械手,可以大大提高劳动生产率,保证产品质量, 改善劳动条件。又如在微电子、医药等生产部门,采用机械手操作,可以消除人对产品 的污染、确保产品质量。机械手可以在有毒、噪音、高温、易燃、易爆等危险有害的环境中代替人长期稳定 的工作,从根本上解决了操作者的安全保障问题。因而在这方面应用和推广机器人技术 是十分迫切和必要的。近代工业机械手的原型可以从本世纪 40 代算起。当时适应核技术的发展需要开发了 处理放射性材料的主从机械手。 50
3、年代初美国提出了“通用重复操作机器人”的方案, 59 年研制出第一工业机械手原型。由于历史条件和技术水平关系,在 60年代机械手发 展较慢。进入 70 年代后,焊接、喷漆机械手相继在工业中应用和推广。随着计算机技术、 控制技术、人工智能的发展、机械手技术得到迅速发展,出现了更为先进的可配视觉、 触觉的机器人所应用的机械手。如美国Unimation公司PUM系列工业机器人相关的机械 手,即使由直流伺服驱动、关节式结构、多cpu微机控制、采用专用语言编程的技术先 进的机械手。到了 80、 90年代机器人及相关的机械手开始在工业上普及应用。据统计 1980年全世界约有两万台机器人在工业上应用,而到今
4、年 增长更快。今年已近开发出 具有视觉、触觉及力觉感受的高性能机器人以及各种智能装配机械手, 并投入工业应用。1.2国内外机械手研究概况我国的工业机械手发展主要是逐步扩大其应用范围。在应用专业机械手的同时,相 应的发展通用机械手,研制出示教式机械手工业机械手是在第二次世界大战期间发展起 来的,始于 40年代的美国橡树岭国家实验室的搬运核原料的遥控机械操作手研究, 它是 一种主从型的控制系统。 1958年美国联合控制公司研制出第一台机械手。它的结构是: 机体上安装一回转长臂,端部装有电磁铁的工件抓放机构,控制系统是示教型的; 1962 年,美国联合控制公司在上述方案的基础上,又试制成一台数控示教
5、再现型机械手。运 动系统仿造坦克炮塔,臂可以回转、俯仰、伸缩,用液压驱动;控制系统用磁鼓做储存 装置。不少球面坐标式机械手就是在这个基础上发展起来的;普曼公司专门生产工业机 械手联邦德国机器制造业是从 1970年开始应用机械手,主要用于起重运输、焊接和设备 的上下料等作业:联邦德国K公司还生产一种点焊机械手,采用关节式结构和程序控制; 日本是工业机器人发展最快,应用国家最多的国家,自 1969年从美国引进两种典型机械 手后,开始大力从事机械手的研究,目前以成为世界上工业机械手应用最多的国家之一。 前苏联自六十年代开始发展应用机械手, 主要用于机械化、自动化程序较低、繁重单调、 有害于健康的辅助
6、性工作。我国工业机械手的研究与开发始于 20世纪70年代。1972年我国第一台机械手开发 于上海,随之全国各省都开始研制和应用机械手。从第七个五年计划(1986-1990)开始, 我国政府将工业机器人的发展列入其中,并且为此项目投入大量的资金,研究开发并且 制造了一系列的工业机器人,有由北京机械自动化研究所设计制造的喷涂机器人,广州 机床研究所和北京机床研究所合作设计制造的点焊机器人,大连机床研究所设计制造的 氩弧焊机器人,沈阳工业大学设计制造的装卸载机器人等等。这些机器人的控制器,都 是由中国科学院沈阳自动化研究所和北京科技大学机器人研究所开发的,同时一系列的 机器人关键部件也被开发出来,
7、如机器人专用轴承,减震齿轮,直流伺服电机,编码器, DCPW等等。计算机控制机械手和组合式机械手等。可以将机械手各运动构件,如伸缩、摆动、 升降、横移、俯仰等机构,设计成典型的通用机构,以便根据不同的作业要求,选用不 用的典型机构,组装成各种用途的机械手,即便于设计制造,又便于跟换工件,扩大了 应用范围。机械手的种类,按驱动方式分为液压式 .气动式. 电动式.机械式机械手;按适用范围可以分为专用机械手和通用机械手两种;按运动轨迹可以分为点位控制和连续轨迹控制机械1.3 课题研究的内容本课题将要完成的主要任务如下:(1) 选取合适的曲轴,并确定其特征参数;(2) 选取机械手的坐标型式和自由度;(
8、3) 设计出机械手的各执行机构,包括:手部、手腕、手臂等部件的设计;(4) 液压传动系统的设计。本课题将设计出机械手的液压传动系统,包括液动元器件 的选取,液动回路的设计;1.4 机械手的组成工业机械手是工业机器人的执行系统,由执行机构、驱动机构和控制机构三部分组成, 是抓取工件、进行操作及各种运动的机械部件。( 一 ) 执行机构包括手部 、手腕、手臂和立柱等部件,有的还增设行走机构。1、手部手部装在操作机手腕的前端,它是操作机直接执行工作的装置。由于与物件接触的 形式不同,可分为夹持式和吸附式手部。夹持式手部由手指(或手爪)和传力机构所构成。手指是与物件直接接触的构件,常 用的手指运动形式有
9、回转型和平移型。回转型手指结构简单,制造容易,故应用较广泛。 平移型应用较少,其原因是结构比较复杂,但平移型手指夹持圆形零件时,工件直径变 化不影响其轴心的位置,因此适宜夹持直径变化范围大的工件。手指结构取决于被抓取物件的表面形状、被抓部位 (是外廓或是内孔) 和物件的重量及尺寸。常用的指形有平面的、V形面的和曲面的:手指有外夹式和内撑式;指数有双指 式、多指式和双手双指式等。而传力机构则通过手指产生夹紧力来完成夹放物件的任务。传力机构型式较多,常 用的有: 滑槽杠杆式、连杆杠杆式、斜面杠杆式、齿轮齿条式、丝杠螺母弹簧式和重力式吸附式手部主要由吸盘等构成,它是靠吸附力 (如吸盘内形成负压或产生
10、电磁力) 吸 附物件,相应的吸附式手部有负压吸盘和电磁盘两类。对于轻小片状零件、光滑薄板材料等,通常用负压吸盘吸料。造成负压的方式有气 流负压式和真空泵式。 对于导磁性的环类和带孔的盘类零件,以及有网孔状的板料等,通常用电磁吸盘吸料。 电磁吸盘的吸力由直流电磁铁和交流电磁铁产生。用负压吸盘和电磁吸盘吸料,其吸盘的形状、数量、吸附力大小,根据被吸附的物 件形状、尺寸和重量大小而定。此外,根据特殊需要,手部还有勺式(如浇铸机械手的浇包部分 ) 、托式(如冷齿轮机 床上下料机械手的手部)等型式.2、手腕是连接手部和手臂的部件,并可用来调整被抓取物件的方位。3、手臂 手臂是支承被抓物件、手部、手腕的重
11、要部件。手臂的作用是带动手指去抓取物件, 并按预定要求将其搬运到指定的位置.工业机械手的手臂通常由驱动手臂运动的部件 ( 如油缸、气缸、齿轮齿条机构、连杆 机构、螺旋机构和凸轮机构等)与驱动源(如液压、气压或电机等) 相配合,以实现手臂的 各种运动。手臂在进行伸缩或升降运动时,为了防止绕其轴线的转动,都需要有导向装 置,以保证手指按正确方向运动。此外,导向装置还能承担手臂所受的弯曲力矩和扭转 力矩以及手臂回转运动时在启动、制动瞬间产生的惯性力矩,使运动部件 受力状态简单。导向装置结构形式,常用的有:单圆柱、双圆柱、四圆柱和V形槽、燕尾槽等导向型 式。4、立柱立柱是支承手臂的部件,立柱也可以是手
12、臂的一部分,手臂的回转运动和升降(或俯 仰) 运动均与立柱有密切的联系。机械手的立往通常为固定不动的, 但因工作需要,有时 也可作横向移动,即称为可移式立柱。5、机座机座是机械手的基础部分,机械手执行机构的各部件和驱动系统均安装于机 座上,故起支撑和连接的作用。(二)驱动系统驱动系统是驱动工业机械手执行机构运动的动力装置,通常由动力源、控制调节装 置和辅助装置组成。常用的驱动系统有液压传动、气压传动、电力传动和机械传动。第二章 机械手的总体结构设计机械手总体设计图(proe效果图)2.1机械手的座标型式与自由度座标型式分析按机械手手臂的不同运动形式及其组合情况,其座标型式可分为直角座标式、圆柱
13、座标 式、球座标式和关节式。由于本机械手在上下料时手臂具有升降、收缩及回转运动,因 此,采用圆柱座标型式。自由度分析相应的机械手具有三个自由度,即手臂的伸长、缩短和整体旋转手臂伸缩手 臂 的 伸 缩整 体 旋 转图2-1机械手的手指、手腕、手臂的运动示意图机械手的手部结构方案设计为了使机 械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件是 棒料时,使用夹持式手部;当工件是板料时,使用气流负压式吸盘。2.13机械手的手腕结构方案设计考虑 到机 械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须设有回 转运动才可满足工作的要求。因此,手腕设计成回转结构,实现手腕回转运动的机构为
14、回转气缸。2.14机械手的手臂结构方案设计按照抓取工件的要求,本机械手的手臂有三个自由度,即手臂的伸缩、左右回转 和升降(或俯仰)运动。手臂的回转和升降运动是通过立柱来实现的,立柱的横向移动即 为手臂的横移。手臂的各种运动由气缸来实现。2.5机械手的驱动方案设计驱动机构是工业机械手的重要组成部分,工业机械手的性能价格比在很大程度上取 决于驱动方案及其装置。根据动力源的不同,工业机械手的驱动机构大致可分为液压、气 动、电动和机械驱动等四类。采用液压机构驱动机械手, 结构简单、尺寸紧凑、重量轻、控 制方便,驱动力大等优点。因此,机械手的驱动方案选择液压驱动。2.6 机械手的控制方案设计考虑到机械手
15、的通用性,同时使用点位控制,因此我们采用可编程序控制器 (PLC) 对机械手进行控制。当机械手的动作流程改变时,只需改变PLC程序即可实现,非常方 便快捷。2.7 机械手的主要参数1、主参数机械手的最大抓重是其规格的主参数,目前机械手最大抓重以 10公斤左 右的为数最多。故该机械手主参数定为 10公斤,高速动作时抓重减半。使用吸盘式手部 时可吸附 5 公斤的重物。2、基本参数运动速度是机械手主要的基本参数。操作节拍对机械手速度提出了要求, 设计速度过低限制了它的使用范围。而影响机械手动作快慢的主要因素是手臂伸缩的速 度。该机械手最大移动速度设计为1.2m/s,最大回转速度设计为1200
16、6; /s,平均移动速 度为lm/s,平均回转速度为900° /s。除了运动速度以外,手臂设计的基本参数还有伸缩行程和工作半径。大部分机械手 设计成相当于人工坐着或站着且略有走动操作的空间。过大的伸缩行程和工作半径,必 然带来偏重力矩增大而刚性降低。在这种情况下宜采用自动传送装置为好。根据统计和 比较,该机械手手臂的伸缩行程定为600mn最大工作半径约为1500mm手臂安装前后可 调200mm手臂回转行程范围定为2400(应大于180否则需安装多只手臂),又由于该机 械手设计成手臂安装范围可调,从而扩大了它的使用范围。手臂升降行程定为 150mm。定位精度也是基本参数之一。该机械手的
17、定位精度为土 0.5土 lmm2.8 机械手的技术参数列表一、用途:简单搬运二、设计技术参数 : 为了保证这些参数指标,就需要在机械结构设计中充分考虑结构的强度要求、认真分析机械动力特性,选择良好的结构型式,使机械手具有良好的工作性能。1、抓重(用来表示机器人负荷能力的参数,抓取重量与机器人的运行速度有关,通常用最 大速度时腕部最大负荷(N表示。)30公斤(夹持式手部)2、自由度数(说明腰、臂、腕等共有几个运动自由度。)4个自由度3、座标型式圆柱座标4、最大工作半径1500mm5、手臂最大中心高1380mm6手臂运动参数伸缩行程400mm伸缩速度小于 300mm/s升降行程300mm升降速度小
18、于70mm/s回转范围0。240 °回转速度小于90° /s7 、手腕运动参数回转范围:0-18008 t响系统达到最高速度的时间,一般选取0.030.5s9、手指夹持范围棒料:80150mm10、驱动方式液压传动(采用液压驱动,其具有体积小、质量轻、结构紧凑、传动平稳、操作 简单、安全、经济、易于实现过载保护且液压元件能够自行润滑等一系列优点。)第三章 机械手手部的设计计算3.1 手部设计基本要求(1)应具有适当的夹紧力和驱动力。应当考虑到在一定的夹紧力下,不同的传动机构 所需的驱动力大小是不同的。(2)手指应具有一定的张开范围,手指应该具有足够的开闭角度(手指从张开到闭
19、合 绕支点所转过的角度) ,以便于抓取工件。(3)要求结构紧凑、重量轻、效率高,在保证本身刚度、强度的前提下,尽可能使结 构紧凑、重量轻,以利于减轻手臂的负载。(4)应保证手抓的夹持精度。3.2 典型的手部结构(1)回转型 包括滑槽杠杆式和连杆杠杆式两种。(2)移动型 移动型即两手指相对支座作往复运动。(3)平面平移型。3.3 机械手手抓的设计计算选择手抓的类型及夹紧装置 本设计是设计平动搬运机械手的设计,考虑到所要达到的原始参数:手抓张合角=600,夹取重量为60Kg常用的工业机械手手部,按握持工件的原理,分为夹持和吸附 两大类。吸附式常用于抓取工件表面平整、面积较大的板状物体, 不适合用于
20、本方案。本设 计机械手采用夹持式手指 , 夹持式机械手按运动形式可分为回转型和平移型。平移型手指的张开闭合靠手指的平行移动 , 这种手指结构简单, 适于夹持平板方 料, 且工件径向尺寸的变化不影响其轴心的位置 , 其理论夹持误差零。若采用典型的平移 型手指, 驱动力需加在手指移动方向上,这样会使结构变得复杂且体积庞大。显然是不合适 的,因此不选择这种类型。通过综合考虑,本设计选择二指回转型手抓,采用滑槽杠杆这种结构方式。夹紧装置 选择常开式夹紧装置,它在弹簧的作用下机械手手抓闭和,在压力油作用下,弹簧被压缩, 从而机械手手指张开。手抓的力学分析下面对其基本结构进行力学分析:滑槽杠杆图3.1 (
21、a)为常见的滑槽杠杆式手部 结构。Fpaa a(a)(b)上图为滑槽杠杆式手部结构、受力分析如图所示为连杆式手部结构。作用在拉杆上的驱动力3为F,两连杆2对拉杆反 作用力为F1、F2,其力的方向沿连杆两铰链中心的连线,指向0点并与水平方向成a 角,由拉杆的力平衡条件可知,即刀 Fx=CF仁F2;刀 Fy=ORF2Fi-JF2cos由连杆对手指的作用力为F1且 M°i F =o得:2RhFzbF=(3.1)cosb2匚cosFna式中a手指的回转支点到对称中心的距离(mm.工件被夹紧时手指的滑槽方向与两回转支点的夹角由分析可知,当驱动力F 定时, 角增大,则握力Fn也随之增大,但 角过
22、大会导致 拉杆行程过大,以及手部结构增大,因此最好 =30° 400 o夹紧力及驱动力的计算手指加在工件上的夹紧力,是设计手部的主要依据。必须对大小、方向和作用点进行 分析计算。一般来说,需要克服工件重力所产生的静载荷以及工件运动状态变化的惯性 力产生的载荷,以便工件保持可靠的夹紧状态。手指对工件的夹紧力可按公式计算:Fn K,K2K3G(3.2)式中Ki 安全系数,通常1.2 2.0 ;k2工作情况系数,主要考虑惯性力的影响。可近似按下式估K21 -其中ga,重力方向的最大上升加速度;aVmaxVmax运载时工件最大上升速度,本机械手的工件只做水平和垂直平移,当 它的移动速度为50
23、0毫米/秒,移动加速度为1000毫米/秒2t响一一系统达到最高速度的时间,一般选取0.03 0.5sK3 方位系数,根据手指与工件位置不同进行选择。G被抓取工件所受重力(N)表3-1液压缸的工作压力作用在活塞上外力F(N)液压缸工作压力Mpa作用在活塞上外力F(N液压缸工作压力Mpa小于50000.8- 120000 - 300002.0- 4.05000 -100001.52.030000 - 5000043 5.010000 -200002.5- 3.050000以上5.0- 8.0计算:设a=50mm,b=100mm:< <40°;机械手达到最高响应时间为0.5s,
24、求夹紧力Fn 和驱动力F和驱动液压缸的尺寸。设K,1.5K21 a =1+1000/9810 1.1gK30.5根据公式,将已知条件带入:Fn =1.1 0.5 50 9.8 1.5N242.55N(2)根据驱动力公式得(上页已得出公式):2 100 0 2F 计算cos30°242.55 727.65计算50(3)式中 n部的机械效率,一般取0.850.95727.650.85856.06N本设计取 °.85F计算卜实际(4) 确定液压缸的直径D2 2'F实际:D d p4选取活塞杆直径d=0.5D,选择液压缸压力油工作压力P=0.8 1MPa取P=0.8MPa
25、根据表4.1 (JB826-66),选取液压缸内径为:D=40mm4 856.060.8 1 06 0.750.04263m42.6mm则活塞杆内径为:D=40 0.5=20mm 选取 d=20mm手抓夹持范围计算为了保证手抓张开角为600,活塞杆运动长度为34mm手抓夹持范围,手指长100mm当手抓没有张开角的时候,如图3.2 (a)所示,根据机构 设计,它的最小夹持半径R 40,当张开600时,如图3.2 (b)所示,最大夹持半径民计算如下:R2 100 tg300 40cos30° 90机械手的夹持半径从40 90mm(b)(a)图3.2手抓张开示意图3.4机械手手抓夹持精度的
26、分析计算机械手的精度设计要求工件定位准确,抓取精度高,重复定位精度和运动稳定性好,并 有足够的抓取能力12 。机械手能否准确夹持工件,把工件送到指定位置,不仅取决于机械手的定位精度(由 臂部和腕部等运动部件来决定),而且也于机械手夹持误差大小有关。特别是在多品种的 中、小批量生产中,为了适应工件尺寸在一定范围内变化,一定进行机械手的夹持误差。该设计以棒料来分析机械手的夹持误差精度。机械手的夹持范围为80mm 150mm一般夹持误差不超过1mm分析如下:工件的平均半径:Rcp 75 4057.5mm手指长I 100mm,取V型夹角21200偏转角 按最佳偏转角确定:1 Rcp160. _ 0co
27、scos046I sin100 sin 60计算R0 l sin cos 100 sin 60° cos46° 6015当R0 Rmax Rmin S时带入有:rmax2sin2I 程 cos sin2Rmaxsin2I 也 cos sin0.678夹持误差满足设计要求。3.5弹簧的设计计算选择簧弹是压缩条件,选择圆柱压缩弹簧。如图3.4所示,计算过程13如下图3.4圆柱螺旋弹簧的几何参数(1) .选择硅锰弹簧钢,查取许用切应力800MPa(2) .选择旋绕比C=8贝U,/ 4C 10.615K4C 46(3.3)4C 10.6154C 460.61561.183(3).根
28、据安装空间选择弹簧中径D=42mm估算弹簧丝直径D dC425.25mm8(4).试算弹簧丝直径'fmax kcd 1.6(3.4)d'1.6 FmAxKc1.6 1621183 8 7mm800 106(5) .根据变形情况确定弹簧圈的有效圈数:Gd8Fmax cMAX(3.5)选择标准为nGd8 F max cMAX680000 101621 83°.007 2.863,弹簧的总圈数口n 1.5 31.5 4.5 圈(6) .最后确定 D 42mm,d 7mm,D1 D d 42 7 35mm,D2 D d 42 7 52mm(7) .对于压缩弹簧稳定性的验算对于
29、压缩弹簧如果长度较大时,则受力后容易失去稳定性,这在工作中是不允许的。 为了避免这种现象压缩弹簧的长细比b 74 1 76,本设计弹簧是2端自由,根据D 12下列选取:当两端固定时,b 5.3,当一端固定;一端自由时,b 3.7 ;当两端自由转动时,b 2.6。结论本设计弹簧b 1.76 2.6,因此弹簧稳定性合适。(8) .疲劳强度和应力强度的验算。对于循环次数多、在变应力下工作的弹簧,还应该进一步对弹簧的疲劳强度和静应 力强度进行验算(如果变载荷的作用次数N 10,或者载荷变化幅度不大时,可只进行静应力强度验算)。现在由于本设计是在恒定载荷情况下,所以只进行静应力强度验算。计算公式:Ssm
30、ax(3.6)Ss选取13 1.7(力学性精确能高)max8KD F3厂d3(3.7)max晋F83.i4840.00)742 1621 598756479Sscamax800 1Q6Pa1.3361598756479pa结论:经过校核,弹簧适应。3.6本章小结通过本章的设计计算,先对滑槽杠杆式的手部结构进行力学分析,然后分别对滑槽 杠杆式手部结构的夹紧力、夹紧用的弹簧、驱动力进行计算,在满足基本要求后,对手 部的夹持精度进行分析计算。4腕部的设计计算4.1腕部设计的基本要求(1) 力求结构紧凑、重量轻腕部处于手臂的最前端,它连同手部的静、动载荷均由臂部承担。显然,腕部的结 构、重量和动力载荷
31、,直接影响着臂部的结构、重量和运转性能。因此,在腕部设计时, 必须力求结构紧凑,重量轻。(2) 结构考虑,合理布局腕部作为机械手的执行机构,又承担连接和支撑作用,除保证力和运动的要求外,要 有足够的强度、刚度外,还应综合考虑,合理布局,解决好腕部与臂部和手部的连接。(3) 必须考虑工作条件对于本设计,机械手的工作条件是在工作场合中搬运加工的棒料,因此不太受环境 影响,没有处在高温和腐蚀性的工作介质中,所以对机械手的腕部没有太多不利因素。 4.2腕部的结构以及选择典型的腕部结构(1) 具有一个自由度的回转驱动的腕部结构。它具有结构紧凑、灵活等优点而被广腕部回 转,总力矩M,需要克服以下几种阻力:
32、克服启动惯性所用。回转角由动片和静片 之间允许回转的角度来决定(一般小于270° )。(2) 齿条活塞驱动的腕部结构。在要求回转角大于270°的情况下,可采用齿条活塞驱动 的腕部结构。这种结构外形尺寸较大,一般适用于悬挂式臂部。(3) 具有两个自由度的回转驱动的腕部结构。它使腕部具有水平和垂直转动的两个自由 度。(4) 机-液结合的腕部结构422腕部结构和驱动机构的选择本设计要求手腕回转1800,综合以上的分析考虑到各种因素,腕部结构选择具有一个自由度的回转驱动腕部结构,采用液压驱动4.3腕部的设计计算腕部设计考虑的参数夹取工件重量30Kg,腕部的驱动力矩计算(1)腕部的驱
33、动力矩需要的力矩 M惯。高为夹取棒料直径100mm长度600mm重量30Kg,当手部回转180°时,计算 力矩:(1)手抓、手抓驱动液压缸及回转液压缸转动件等效为一个圆柱体,220mm直径120mm其重力估算 G=3.140.0620.22 7800Kg; m3 9.8N Kg 190N(2)擦力矩M摩0.1m。(3)启动过程所转过的角度180=0.314rad,等速转动角速度2.616s 2 。M惯 JJ工件(4.1)1190NJMR22查工程力学取转动惯量公式有:2 20.06 N m s 0.0342N2 9.8N KgJ工件丄G12 gl23R2丄亜空 0.62 3 0.05
34、2129.81.8375N代入:0.03422.61621.837520.396N m2 0.3140.1MM 20.39622.663N m0.9腕部驱动力的计算20253240505563657075808590951001051101251301401601802002502Mb R2 r22 61.110.0660.0552 0.022527.35Mpa,选择 8Mpa设定腕部的部分尺寸:根据表4-1设缸体内空半径R=110mm外径根据表3-2 选择121mm这个是液压缸壁最小厚度,考虑到实际装配问题后,其外径为226mm 动片宽度b=66mm输出轴r=22.5mm.基本尺寸示如图4.
35、1所示。则回转缸工作压液压缸内径405063809010011012514015016018020020钢p 160Mpa5060769510812113316814618019421924545钢P 200Mpa50607695108121133168146180194219245腕部液压缸剖截面结构示意表4.2标准液压缸外径(JB1068-67)( mm)图4.1表4.3螺钉间距t与压力P之间的关系工作压力p( Mpa螺钉的间距t(mm)0. 1.5小于1501.5 - 2.5小于1202.5- 5.0小于1005.0-10.0小于80434液压缸盖螺钉的计算缸盖螺钉的计算,如图4.2所示
36、,t为螺钉的间距,间距跟工作压强有关, 见表4.3,在这种联结中,每个螺钉在危险剖面上承受的拉力(4.2)计算:液压缸工作压强为P=8Mpa所以螺钉间距t小于80mm试选择8个螺钉,D 3.14 0.1143.178088,所以选择螺钉数目合适Z=8个危险截面SR2r22 20.1120.04520.007908875m2所以,FqPSZ(4.3)Fqs KFqFqPS7908.875NK 1.5T.8FqsKFq 1.5 7908.8 11863.3N所以FQ。Fq Fq =11863.3+10545=19772N螺钉材料选择Q235 则詈 160MPa ( n5)螺钉的直径d 4皿(4.4
37、 )4 =3 197720.0159m3.14 160 106螺钉的直径选择d=16mm.动片和输出轴间的连接螺钉(1)动片和输出轴间的连接螺钉动片和输出轴之间的连接螺钉一般为偶数,对称安装,并用两个定位销定位。连接螺钉的作用:使动片和输出轴之间的配合紧密。M 摩 FQZf dbP D2 d28于是得Fq蛊 °2 d2(4.5)D动片的外径;f被连接件配合面间的摩擦系数,刚对铜取f=0.15螺钉的强度条件为1.3Fq合d:d1(4.6)或(4.7)带入有关数据,得螺钉材料选择Q235则螺钉的直径螺钉的直径选择d2°.°66 8 1060.112 0.04524627N4 Z 0.15 0.0322401.2200MPa (41.3 24627snn 1.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常熟银行活动方案
- 小班亲子活动方案
- 少儿节日活动方案
- 小班家长会教研活动方案
- 工会培训教育活动方案
- 小米商城活动方案
- 小班夏日活动方案
- 尖头女鞋清仓活动方案
- 师徒金搭档活动方案
- 小学童话绘画活动方案
- 自来水有限公司2023-2024年度小口径水表(新装)采购项目招标文件
- 成人鼻肠管的留置与维护(2021团体标准解读)-20221004172843
- 薪酬管理(人大苏中兴老师课件)
- 农产品区域公用品牌 辛集黄冠梨生产技术规程
- 2024-2025学年第一学期部编版语文八年级教学计划(含教学进度表)
- 智能仓库与仓储管理自动化
- 劳动技术教室管理及使用制度
- 《电力工程造价从业人员培训与考核规范》
- 期末测试卷(试题)-2023-2024学年苏教版五年级数学下册
- JB-T 8532-2023 脉冲喷吹类袋式除尘器
- 压力容器相关标准
评论
0/150
提交评论