下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、证明三角形全等找角相等的方法1、利用平行直线性质两直线平行的性质定理:1.两直线平行,同位角相等2.两直线平行,内错角相等例1如图所示,直线 AD、BE相交于点C,AC=DC,BC=EC. 求证:AB=DE已知:如图所示, A、B、C、D在同一直线上, AD = BC,AE = BF,CE = DF,试说明:(1) DF / CE; (2) DE = CF.2、巧用公共角要点:在证两三角形全等时首先看两个三角形是不是有公共交点, 点,在看他们是否存在公共角例 1.如图所示,D 在 AB 上, E 在 AC 上, AB=AC, / B= / C. 求证:AD=AE如果有公共交10.已知:如图,A
2、D=AE,A吐AC,BD CE相交于O.求证:OD= OE三、利用等边对等角要点:注意相等的两条边一定要在同一个三角形内才能利用等边对等角例1在 ABC中,AB=AC,AD是三角形的中线求证: ABD ACD四、利用对顶角相等例1、已知:四边形ABCD中,AC、BD交于0点,AO=OC , BA丄AC , DC丄AC .垂E、足分别为A , C .求证:AD=BC已知:如图,在 AB AC上各取一点, 交于0,连结AO, /仁/ 2,求证:/ B=Z C五、利用等量代换关系找出角相等(1) A公共角二B公共角,则可以得出 A= B求证: EAD CAB .B例 1.已知:如图 13- 4, A
3、E=AC , AD=AB,/ EAC= / DAB ,已知:女口图,AB=AC,AD=AE,Z BACK DAE.求证:/ A=Z D已知:女口图,/ 1 = Z 2,BE=CF,AC=DE,E C在直线 BF上.(2)常用的在直角三角形中找出角相等的条件例1、如图, ABC中,/ BAG90度,ABAC, BD是/ABC的平分线,BD的延长 线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE. ABC中, /ACB=90 ,AC=BC,AE是 BC边上的中线,过 C作 CF丄AE,垂足为 F, 过B作BDL BC交CF的延长线于D.求证:(1)AE=CD;(2)若 AC
4、=12cm求 BD的长.六、结合旋转性质,即旋转图形角度不变,边长不变例1.如图,把一张矩形的纸 ABCD沿对角线BD折叠,使点C落在点E处,BE与AD?交于点F. ( 1)求证: ABFA EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连结 DM试判断四边形BMDF的形状,并说明理由.DM1已知,如图 13-6,上一点,DF交AC于点求证:AD=CF .D是厶ABC的边 ABE, DE=FE, FC / AB,图 13-62、如图,ABC是正方形,点G是BC上的任意一点,DE丄AG于E, BF / DE ,交AG 于 F.求证:AF BF EF .G3、 如图 ABCA A'E'C,/ ACB=90。,/ A=25°,点 B 在 A'E' 上,求/ ACA' 的 度数。4、如图 AC / DE ,BC / EF, AC = DE 求证:AB5 在厶ABC 中,AB BC 2,,转角 (0 °90 °得厶ABC,5、图,OE=OF OC=O,CF与 DE交于点 A,求证:AC=AD6如图所示,P为/ AOB的平分线上一点,PCL OA于 C,?Z OAP# OBP=18O , 若 OC=4cm 求 AO+B的值.ABC 120°将厶ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 退货商品抽样检测协议
- 企业绩效考核方案编制及指标设置
- 冷链物流前置仓运输协议
- 跨境配送委托运输合同
- 网络营销推广服务协议
- 2025中国南方航空航医岗位社会招聘3人考试笔试备考试题及答案解析
- 配送背包快递服务合同协议
- 企业品牌建设与市场营销综合方案
- 水利工程施工设计与组织方案
- 货物分时配送协议
- 自动化生产线调试与安装试题及答案
- 2025年国家开放大学《法学导论》期末考试备考题库及答案解析
- 物业公司动火安全管理制度
- 一堂有趣的实验课作文(6篇)
- 幕墙创优工程汇报材料
- 2025年铁岭银行见习生招聘50人笔试备考试题及答案解析
- 老年人穿衣搭配课件
- 【2025年】嘉兴市委宣传部所属事业单位选聘工作人员考试试卷及参考答案
- 二手房意向金合同范本
- 充电桩与后台服务器通讯协议V2G
- 抵御宗教极端思想课件
评论
0/150
提交评论