平抛运动常见题型_第1页
平抛运动常见题型_第2页
平抛运动常见题型_第3页
平抛运动常见题型_第4页
平抛运动常见题型_第5页
免费预览已结束,剩余12页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、平 抛运动 常见题型及应 用专题(一)平抛运动的基础知识1 .定义:水平抛出的物体只在重力作用下的运动。2 .特点:(1 )平抛运动是一个同时经历水平方向的匀速直线运动和竖直方 向的自由落体运动的合运动。(2)平抛运动的轨迹是一条抛物线,具一般表达式为 2 y ax bx c 。(3)平抛运动在竖直方向上是自由落体运动,加速度 a g恒定, 所以竖直方向上在相等的时间内相邻的位移的高度之比为 Si : S2 : S3 1:3: 5竖直方向上在相等的时间内相邻的位移之差是一个 ,恒量 Siii Sii Sii Si gT 2 O(4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为)方向和位移

2、方向(与水平方向之间的夹角是)是不相同的,其关系式tan 2 tan (即任意一点的速度延长线必交于此时物体位移的水平 分量的中点)。3 .平抛运动的规律描绘平抛运动的物理量有Vo、Vy、V、X、y、s、 、t,已知这八个物理量中的任意两个,可以求出其它六个。运动分类加速度速度位移轨迹分运动x方向0直线y方向直线合运动大小抛物线与x方向的夹角(二)平抛运动的常见问题及求解思路关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题, 有平抛运动与圆周运动组合的问题、 有平抛运动与天体运动组合的问 题、有平抛运动与电场(包括一些复合场)组合的问题等。本文主要 讨论直接运用平抛运动的特点和规律来求

3、解的问题,即有关平抛运动的常见问题。1.从同时经历两个运动的角度求平抛运动的水平速度求解一个平抛运动的水平速度的时候, 我们首先想到的方法,就 应该是从竖直方向上的自由落体运动中求出时间, 然后,根据水平方 向做匀速直线运动,求出速度。例1如图1所示,某人骑摩托车在水平道路上行驶,要在 A处越 过x 5m的壕沟,沟面对面比 A处低h 1.25m,摩托车的速度至少要 有多大?图1解析:在竖直方向上,摩托车越过壕沟经历的时间在水平方向上,摩托车能越过壕沟的速度至少为2 .从分解速度的角度进行解题对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方 向,则我们常常是“从分解速度”的角度来研究问题

4、。例2如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一 段时间后,垂直地撞在倾角为30的斜面上。可知物体完成这段飞行 的时间是()A. s B. 2 s C. 3s D. 2s 33图2解析:先将物体的末速度Vt分解为水平分速度Vx和竖直分速度Vy (如图2乙所示)。根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以Vx V0;又因为Vt与斜面垂直、Vy与水平面垂直, 所以Vt与Vy间的夹角等于斜面的倾角。再根据平抛运动的分解可知物体在竖直方向做自由落体运动,那么我们根据 Vy gt就可以求出时 间t 了。则所以 VyVxVo- -918- m/ s 9.8 3m/ sta

5、n tan 301、3根据平抛运动竖直方向是自由落体运动可以写出所以t上毁由3s g 9.8所以答案为Co3 .从分解位移的角度进行解题对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水 平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向, 然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”)例3在倾角为 的斜面上的P点,以水平速度刈向斜面下方抛出一 个物体,落在斜面上的Q点,证明落在Q点物体速度v VoVl 4tan2 。解析:设物体由抛出点P运动到斜面上的Q点的位移是1,所用 时间为t,则由

6、“分解位移法”可得,竖直方向上的位移为 h 1sin ; 水平方向上的位移为s 1cos。又根据运动学的规律可得1 C竖直方向上h -gt , Vy gt水平方向上s Vot1 2h 2 gtVy一贝Utan - ,Vy 2vo tan s Vot2vo所以Q点的速度例4如图3所示,在坡度一定的斜面顶点以大小相同的速度 V。同时 水平向左与水平向右抛出两个小球 A和B,两侧斜坡的倾角分别为37 和53,小球均落在坡面上,若不计空气阻力,则 A和B两小球的运 动时间之比为多少?图3解析:37和53都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到所以有tan 37gti2V

7、0同理tan 53gt22v0则 ti:t29:164 .从竖直方向是自由落体运动的角度出发求解在研究平抛运动的实验中,由于实验的不规范,有许多同学作出 的平抛运动的轨迹,常常不能直接找到运动的起点(这种轨迹,我们 暂且叫做“残缺轨迹”),这给求平抛运动的初速度带来了很大的困 难。为此,我们可以运用竖直方向是自由落体的规律来进行分析。例5某一平抛的部分轨迹如图4所示,已知 X2 a , yi b , y? c , 求Vo。图4解析:A与B、B与C的水平距离相等,且平抛运动的水平方向是匀速直线运动,可设 A到B、B到C的时间为T,则又竖直方向是自由落体运动,则代入已知量,联立可得5 .从平抛运动

8、的轨迹入手求解问题例6从高为H的A点平抛一物体,其水平射程为2s,在A点正上 方高为2H的B点,向同一方向平抛另一物体,其水平射程为 s。两 物体轨迹在同一竖直平面内且都恰好从同一屏的顶端擦过, 求屏的高 度。解析:本题如果用常规的“分解运动法”比较麻烦,如果我们换 一个角度,即从运动轨迹入手进行思考和分析,问题的求解会很容易, 如图5所示,物体从A、B两点抛出后的运动的轨迹都是顶点在 y轴 上的抛物线,即可设A、B两方程分别为2,2,y ax bxc,yax bxc则把顶点坐标 A(0,H)、B(0, 2H)、E (2s,0)、F(s,0)分别代入可得方程组这个方程组的解的纵坐标y :H,即

9、为屏的高。6 .灵活分解求解平抛运动的最值问题例7如图6所示,在倾角为 的斜面上以速度V0水平抛出一小球, 该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距 离的达到最大,最大距离为多少?图6解析:将平抛运动分解为沿斜面向下和垂直斜面向上的分运动, 虽然分运动比较复杂一些,但易将物体离斜面距离达到最大的物理本 质凸显出来。取沿斜面向下为x轴的正方向,垂直斜面向上为y轴的正方向,如 图6所不,在y轴上,小球做初速度为Vo sin、加速度为g cos的匀 变速直线运动,所以有v2 (Vo sin )2 2gycos vy v0 sing cos t 当Vy 0时,小球在y轴上运动到最高

10、点,即小球离开斜面的距离 达到最大。由式可得小球离开斜面的最大距离当Vy 0时,小球在y轴上运动到最高点,它所用的时间就是小球 从抛出运动到离开斜面最大距离的时间。由式可得小球运动的时间 为t 巴tang7 .利用平抛运动的推论求解推论1 :任意时刻的两个分速度与合速度构成一个矢量直角三角 形。例8从空中同一点沿水平方向同时抛出两个小球,它们的初速度大小分别为vi和V2,初速度方向相反,求经过多长时间两小球速度之间 的夹角为90 ?图7解析:设两小球抛出后经过时间t,它们速度之间的夹角为90 , 与竖直方向的夹角分别为 和,对两小球分别构建速度矢量直角三 角形如图7所示,由图可得cot 巫和t

11、an ”Vlgt又因为 90 ,所以cot tan由以上各式可得史经,解得t - :/V1V2Vi gtg推论2:任意时刻的两个分位移与合位移构成一个矢量直角三角例9宇航员站在一星球表面上的某高度处,沿水平方向抛出一个小 球,经过时间t,小球落到星球表面,测得抛出点与落地点之间的距 离为1,若抛出时初速度增大到两倍,则抛出点与落地点之间的距离 为73屋已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G,求该星球的质量M。解析:设第一次抛出小球,小球的水平位移为 x,竖直位移为h, 如图8所示,构建位移矢量直角三角形有若抛出时初速度增大到2倍,重新构建位移矢量直角三角形,如图9所示有

12、,由以上两式得h ;令星球上重力加速度为g ,由平抛运动的规律得h 1gt2 由万有引力定律与牛顿第二定律得簪mgR2 Q|D 2由以上各式解得M任襄3Gt2推论3:平抛运动的末速度的反向延长线交平抛运动水平位移的 中点。证明:设平抛运动的初速度为 股,经时间t后的水平位移为x,如 图10所示,D为末速度反向延长线与水平分位移的交点。根据平抛 运动规律有水平方向位移x Vot竖直方向Vy gt和y 1 gt2由图可知,ABC与ADE相似,贝U近匹Vy y联立以上各式可得DE -2该式表明平抛运动的末速度的反向延长线交平抛运动水平位移的 中点。图10例10如图11所示,与水平面的夹角为 的直角三

13、角形木块固定在 地面上,有一质点以初速度V0从三角形木块的顶点上水平抛出,求在 运动过程中该质点距斜面的最远距离。图11解析:当质点做平抛运动的末速度方向平行于斜面时,质点距斜面的距离最远,此时末速度的方向与初速度方向成角。如图12所示,图中A为末速度的反向延长线与水平位移的交点, AB即为所求 的最远距离。根据平抛运动规律有vytanVygt , X vot 和一 vo由上述推论3知OAI据图9中几何关系得AB AO sin由以上各式解得AB2 .一v0 tan sin2g即质点距斜面的最远距离为2 .一v0 tan sin2g图12推论4:平抛运动的物体经时间t后,其速度vt与水平方向的夹

14、角为,位移s与水平方向的夹角为,则有tan2 tan证明:如图13,设平抛运动的初速度为小,经时间t后到达A点 的水平位移为x、速度为如图所示,根据平抛运动规律和几何关 系:在速度三角形中tanvy gtVo Vo在位移三角形中tan 义支包x 2v0t 2Vo由上面两式可得tan2 tan图13例11 一质量为m的小物体从倾角为30的斜面顶点A水平抛出,落 在斜面上B点,若物体到达B点时的动能为35J,试求小物体抛出时 的初动能为多大?(不计运动过程中的空气阻力)图14解析:由题意作出图14,根据推论4可得3tan 2tan2tan 30 , 所以 tan2 3由三角知识可得cos .21又

15、因为Vt上cos所以初动能EkA - mv(2 EkB 15J221例12如图15所示,从倾角为 斜面足够长的顶点A,先后将同一 小球以不同的初速度水平向右抛出,第一次初速度为 V1,球落到斜面 上前一瞬间的速度方向与斜面的夹角为 1,第二次初速度V2,球落在斜面上前一瞬间的速度方向与斜面间的夹角为2,若V2 Vl,试比较1和2的大小。图15解析:根据上述关系式结合图中的几何关系可得所以 arctan(2tan )此式表明 仅与 有关,而与初速度无关,因此12,即以不同初速度平抛的物体落在斜面上各点的速度方向是互相平行的。推论5:平抛运动的物体经时间t后,位移s与水平方向的夹角为,则此时的动能

16、与初动能的关系为Eh E0(1 4tan2 )证明:设质量为m的小球以V0的水平初速度从A点抛出,经时间t 到达B点,其速度vt与水平方向的夹角为,根据平抛运动规律可作出位移和速度的合成图,如图16所示。图16由上面推论4可知tan 2 tan从图16中看出Vy Vo tan2Vo tan小球到达B点的速度为所以B点的动能为例13如图17所示,从倾角为30的斜面顶端平抛一个物体,阻力 不计,物体的初动能为9J。当物体与斜面距离最远时,重力势能减 少了多少焦耳?图17解析:当物体做平抛运动的末速度方向平行于斜面时,物体距斜面的距离最远,此时末速度的方向与初速度方向成30角,如图17所示1 由 t

17、an 2tan 可得 tan tan 2所以当物体距斜面的距离最远时的动能为根据物体在做平抛运动时机械能守恒有即重力势能减少了 3J平抛运动是较为复杂的匀变速曲线运动, 有关平抛运动的命题也层出 不穷。若能切实掌握其基本处理方法和这些有用的推论,就不难解决平抛问题。因此在复习时应注意对平抛运动规律的总结,从而提高自己解题的能力。【模拟试题】1.关于曲线运动,下列叙述正确的是()A.物体之所以做曲线运动,是由于物体受到垂直于速度方向的力(或者分力)的作用B.物体只有受到一个方向不断改变的力,才可能做曲线运动C.物体受到不平行于初速度方向的外力作用时,物体做曲线运动D.平抛运动是一种匀变速曲线运动

18、2.关于运动的合成,下列说法中正确的是()A.合速度的大小一定比每个分速度的大小都大B.合运动的时间等于两个分运动经历的时间C.两个匀速直线运动的合运动一定也是匀速直线运动D.只要两个分运动是直线运动,合运动一定也是直线运动3.游泳运动员以恒定的速率垂直河岸横渡,当水速突然增大时,对运动员横渡经历的路程、时间发生的影响是()A.路程增加、时间增加B.路程增加、时间缩短C.路程增加、时间不变D.路程、时间均与水速无关4.从同一高度、同时水平抛出五个质量不同的小球,它们初速度 分别为v、2v、3v、4v、5v。在小球落地前的某个时刻,小球在空中 的位置关系是()A.五个小球的连线为一条直线,且连线

19、与水平地面平行B.五个小球的连线为一条直线,且连线与水平地面垂直C.五个小球的连线为一条直线,且连线与水平地面既不平行,也不垂直D.五个小球的连线为一条曲线5.如图1所示,在匀速转动的圆筒内壁上紧靠着一个物体与圆筒 一起运动,物体相对桶壁静止。则()A.物体受到4个力的作用B.物体所受向心力是物体所受的重力提供的C.物体所受向心力是物体所受的弹力提供的D.物体所受向心力是物体所受的静摩擦力提供的图16. 一物体做平抛运动,在两个不同时刻的速度分别为vi和V2,时间间隔为t,那么()A. vi和V2的方向一定不同B.若V2是后一时刻的速度,则vi V2C.由Vi到V2的速度变化量V的方向一定竖直

20、向下D.由vi到V2的速度变化量v的大小为g t7. 一个物体在光滑水平面上以初速度v做曲线运动,已知物体在运 动过程中只受到水平恒力的作用, 其运动轨迹如图2所示,那么,物 体在由M点运动到N点的过程中,速度大小的变化情况是()A.逐渐增大8. 逐渐减小C.先增大后减小D.先减小后增大图28 .以下关于物体运动的几个论述,其中正确的是()A.物体做匀速圆周运动的周期一定与线速度成反比B.物体做匀速圆周运动的周期一定与角速度成反比C.不计空气阻力,水平抛出的物体的运动是匀变速运动D.汽车关闭发动机后,继续滑行时的加速度方向与速度方向相同9 .如图3所示,在河岸上用细绳拉船,为了使船匀速靠岸,拉

21、绳 的速度必须是()A.加速拉 B.减速拉 C.匀速拉 D.先加速后减速图310 .将甲、乙、丙三个小球同时水平抛出后落在同一水平面上,已 知甲和乙抛射点的高度相同,乙和丙抛射速度相同,下列判断中正确 的是()A.甲和乙一定同时落地B.乙和丙一定同时落地C.甲和乙水平射程一定相同D.乙和丙水平射程一定相同11 . 一辆汽车的质量为M,当它通过拱形桥时,可能因为速度过快 而飞离桥面,导致汽车失去控制。所以为了车内车外人的安全,我们 应该限制汽车的车速。这辆汽车要想安全通过拱形桥,在桥顶处车速 不应该超过。(已知拱形桥的曲率半径为 R)12 .如图4所示,圆弧形轨道AB是在竖直面内的1圆周,在B点, 4轨道的切线是水平的,一物体自 A点滑下,到达B点时的速度为 2.8m/s ,已知轨道半径为0.4m,则在小球刚到达B点时的加速度大 小为 m/s2,刚滑过B点时的加速度大小为 m/s2。图413 . 一根长为l的轻绳悬吊着一个质量为m的物体沿着水平方向以 速度v做匀速直线运动,突然悬点遇到障碍物停下来,小球将做 运动。此刻轻绳受到小球的拉力大小为。 (g 9.8m/s2)14 .某同学在做“研究平抛物体运动”的实验中,忘记了记录小球 做平抛运动的起点位置 O, A为物体

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论