大学模式识别考试题及答案详解_第1页
大学模式识别考试题及答案详解_第2页
大学模式识别考试题及答案详解_第3页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1、 模式识别系统的根本构成单元包括:模式采集、特征提取与选择和模式分类。2、 统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法 一般有 串、 树、 网 。3、 聚类分析算法属于(1);判别域代数界面方程法属于(3)。(1) 无监督分类(2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、 假设描述模式的特征量为0-1二值特征量,那么一般采用(4)进行相似性度量。(1) 距离测度(2)模糊测度(3)相似测度 (4)匹配测度5、 以下函数可以作为聚类分析中的准那么函数的有(1)( 3)(4)。(1)(2)J = (乱_阮)馆-丽 - 6 Fisher线性判别函数

2、的求解过程是将 N维特征矢量投影在(2)中进行(1) 二维空间(2) 一维空间(3) N-1维空间1;线性可分、不可分7、以下判别域界面方程法中只适用于线性可分情况的算法有都适用的有301感知器算法2 H-K算法3积累位势函数法8、以下四元组中满足文法定义的有1 2 4 o(1) (AB, 0,1, A?01,A ? 0A1,A ? 1A0 ,B ? BA, B ? 0, A)(2) (A,0,1, A?0, A ? 0 A,A(3) (S,a, b, S ? 00 S, S ? 11S,S? 00,S? 11, S)(4) (A,0,1, A?01, A ? 0 A1,A? 1A0,A)、(

3、15分)简答及证明题(1) 影响聚类结果的主要因素有那些?(2) 证明马氏距离是平移不变的、非奇异线性变换不变的。答:1分类准那么,模式相似性测度,特征量的选择,量纲2证明:护兔禺=H 齐-鬲(2分)三区-壬X无-刘i-l(2分)1分1分设,有非奇异线性变换:1 nJii raRJ-計-対2m-m*艺禺_朮字-履y2=11 m=右怒nw=4g DE-3 二川尤川呂必力=例-丹罗厲-丹 二隔-切巧佔-吗 二詹耳wqS信肴, 二住引也“呂卫尸越易引 =K - ij 1 J11 J71-%=见T叩偈-引4分=d?厲冃、三、8分说明线性判别函数的正负和数值大小在分类中的意义并证明之。答:14分日初的绝

4、对值正比于云到超平面叭希* 的距离厲曲亍二_叫訂平面血的方程可以写成111111-2工 21 汇色式中 I -。于是是平面二的单位法矢量,上式可写成设是平面二中的任一点,是特征空间亠中任一点,点J.到平面厂的距离为差矢量i在应上的投影的绝对值,即陟+叫+1|忸Iksii-i上式中利用了 -在平面二中,故满足方程 式i-i的分子为判别函数绝对值,上式说明,魚习的值0刖正比于云到超平面畑二。的 距离i,一个特征矢量代入判别函数后所得值的绝对值越大说明该特征点距判别界面越 远。2 4分二的正负反映.在超平面匸|的正负侧两矢量兀和;的数积为=间际-外忻侃-02 分显然,当;和L 夹角小于U时,即T在忖

5、指向的那个半空间中, “兀二 0;反之,当和“夹角大于;宀时,即产在可背向的那个半空间中0。由于 隔卜,故刃无-刃和碣討同号。所以,当无在匝指向的半空间中时,唏十叫我沁; 当.;在;背向的半空间中,一-。判别函数值的正负表示出特征点位于哪个半空间 中,或者换句话说,表示特征点位于界面的哪一侧现在五、12分,每问4分在目标识别中,假定有农田和装甲车两种类型,类型?i和类型?2分别代表农田和装甲车,它们的先验概率分别为0.8和0.2,损失函数如表1所示做了三次试验,获得三个样本的类概率密度如下:p讥J : 0.3,0.1,0.6珂心 X : 0.7,0.8,0.31试用贝叶斯最小误判概率准那么判决

6、三个样本各属于哪一个类型;2假定只考虑前两种判决,试用贝叶斯最小风险准那么判决三个样本各属于哪一类;3把拒绝判决考虑在内,重新考核三次试验的结果。5111F和砒_3解:由题可知.巩吋二,巩叱y,巩和吩7卩牝丨耳二11 4分根据贝叶斯最小误判概率准那么知:F临I码丁巩3$0区I码 P竝F爲|码?尸他-il-_ I:,那么可以任判;“1,贝U判为匚;八1“,那么判为、X-_C-3g-lJ_42 4分由题可知:1:尸/贝U二I ,判为丄;Pgld /尸眄|码亍,判为吒;空1如/-.匚 ,判为;34分对于两类问题,对于样本-,假设| -,有皿旳|力二视碍|码疔码|力十2側| 讯如力=_ 乂吟|越工丨码

7、疋码+贞吟丨吐、PH朗円竝%)那么对于第一个样本,二,那么拒判;班|沪冷罟,去心|沪冷背1用碣|沪0 21 尸尸O凤|力=器二眾凤碍|工2曙,那么拒判;,拒判。尸托戶初尸羽凤逼|劝=孚卫巴二扶忌逼二舉尸托戶不;尸羽1. 监督学习与非监督学习的区别:监督学习方法用来对数据实现分类,分类规那么通过训练获得。该训练集由带分类号 的数据集组成,因此监督学习方法的训练过程是离线的。非监督学习方法不需要单独的离线训练过程,也没有带分类号标号的训练 数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。实例:道路图就道路图像的分割而言,监督学习方法那么先在训练用图像中 获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像 进行分割。使用非监督学习方法,那么依据道路路面象素与非道路象素之间的聚类分析进行聚 类运算,以实现道路图像的分割。2. 动态聚类是指对当前聚类通过迭代运算改善聚类;分级聚类那么是将样本个体, 按相似度标准合并, 随着相似度要求的降低实现合并。3. 线性分类器三种最优准那么:Fisher 准那么 :根据两类样本一般类内密集 , 类间别离的特点, 寻找线性分类器最 佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能 分开。该种度量通过类内离散矩阵 Sw和类间离散矩阵Sb实现。感知准那么函数 :准那么函数以使错分类样本到分界

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论