




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、选择题1假设,且,那么的最小值为 A. B. C. D. 2设假设的最小值 ( )A. B. C. D. 3假设集合,那么集合等于 A. B. C. D.4对于函数(),(),假设对任意,存在使得,且,那么称,为“兄弟函数,定义在区间上的“兄弟函数,那么函数在区间上的最大值为A. B. C. D.5假设,那么的最小值为 A. B. C. D. 6假设实数满足,那么的取值范围是 A. B. C. D.7设,假设,那么的最小值是 A B C D8正数满足,那么的最大值为A B C D9,那么的最小值是()A. B. C. D. 10关于的不等式在上恒成立,那
2、么实数的最小值为 ()A. B. C. D. 11设是半径为的球面上的四个不同点,且满足,用分别表示、的面积,那么的最大值是.A. B. C. D. 12在实数集中定义一种运算“,对任意,为唯一确定的实数,且具有性质:1对任意,; 2对任意,.那么函数的最小值为 A B C D13假设直线平分圆: 的周长,那么的取值范围是A. B. C. D. 14关于的不等式()的解集是,且,那么的最小值是A B C. D 15在上定义运算:对,有,如果 (),那么 的最小值是 A B C D 16假设,那么代数式的最小值为()A. B. C. D. 17假设,且,那么以下不等式恒成立的是()A.
3、 B. C. D. 18设正实数满足,那么当取得最大值时,的最大值为A. B. C. D.19,那么的最小值是()A. B. C. D. 20,那么函数的最小值为 A. B. C. D.21直线过点),且与轴轴的正半轴分别交于两点,为坐标原点,那么面积的最小值为( )A. B. C. D. 22假设函数满足:,那么的最小值为A. B. C. D. 2324,且,那么以下结论恒成立的是 ( )A B C D25某企业为节能减排,用万元购进一台新设备用于生产. 第一年需运营费用万元,从第二年起,每年运营费用均比上一年增加万元,该设备每年生产的收入均为万元. 设该设备使用了年后,年平均盈利额到达最大
4、值盈利额等于收入减去本钱,那么等于A. B. C. D.26如图,有一块等腰直角三角形的空地,要在这块空地上开辟一个内接矩形的绿地,,,绿地面积最大值为A. B. C. D.27设那么以下不等式中不恒成立的是 A BC D28设那么以下不等式中不恒成立的是 A BC D29假设,那么的最小值为( )A. B. C. D. 30以下命题正确的选项是( )A假设,那么 B假设,那么C假设,那么 D假设,那么31,假设实数满足,那么的最小值为A. B. C. D. 32不等式对任意恒成立,那么实数的取值范围是( )A B C D 二、填空题33,函数的图象过0,1
5、点,那么的最小值是_.34假设关于的不等式组恒成立,那么所有这样的解构成的集合是_.35对于实数和,定义运算“:,设,且关于的方程为恰有三个互不相等的实数根,那么的取值范围是_.36设连接双曲线与 ()的个顶点的四边形面积为,连接其个焦点的四边形面积为,那么的最大值为.37,且,那么的最小值为 38实数满足,那么的最小值是 .39向量,假设,那么的最小值为 40,那么的最小值为 .41是正数,且,那么的最小值为 .42是内的一点(不含边界),且·,假设,的面积分别为,记,那么的最小值是_43函数 的定义域为,那么实数的取值范为 .44(1成立当且仅当均为正数.2的最小值是3的最大值是
6、4成立当且仅当.以上命题是真命题的是 45设是内一点,且·,定义,其中分别是、的面积,假设,那么的最小值是 .46假设实数满足,那么的最大值是.47在平面直角坐标系中,过坐标原点的一条直线与函数的图像交于两点,那么线段长的最小值是48现要用一段长为的篱笆围成一边靠墙的矩形菜园如下图,那么围成的菜园最大面积是_49设为两个正数,且,那么使得恒成立的的取值范围是_50假设,那么的最小值为 ;51正实数满足,那么的最小值为_52设常数,假设对一切正实数成立,那么的取值范围为_53函数的图象过点,那么函数的最小值是_54设,且,那么的最小值是_55设,那么的最小值为_56在等式的值为 57假
7、设,且函数在处有极值,那么的最大值等于_. 58一艘轮船在匀速行驶过程中每小时的燃料费与它速度的平方成正比,除燃料费外其它费用为每小时元. 当速度为海里/小时时,每小时的燃料费是元. 假设匀速行驶海里,当这艘轮船的速度为_海里/小时时,费用总和最小.59正数满足,那么的最小值为 60正数满足,那么的最大值为 62设均为正实数,且,那么的最小值为_65函数的图象恒过定点A,假设点A在直线上,其中,那么的最小值为_.66,且,那么的最小值是.67一环保部门对某处的环境状况进行了实地测量,据测定,该处的污染指数等于附近污染源的污染强度与该处到污染源的距离之比相距的,两家化工厂(污染源)的污染强度分别
8、为和,它们连线上任意一点处的污染指数等于两化工厂对该处的污染指数之和现拟在它们之间的连线上建一个公园,为使两化工厂对其污染指数最小,那么该公园应建在距化工厂 公里处68设是半径为的球面上的四个不同点,且满足,用分别表示、的面积,那么的最大值是 .69以下结论中 函数有最大值函数有最大值假设,那么正确的序号是_.70假设不等式对于一切正数恒成立,那么实数的最小值为_三、解答题71某造纸厂拟建一座平面图形为矩形且面积为的三级污水处理池,池的深度一定(平面图如下图),如果池四周围墙建造单价为元/,中间两道隔墙建造单价为元/,池底建造单价为元/,水池所有墙的厚度忽略不计 (1)试设计污水处理池的长和宽
9、,使总造价最低,并求出最低总造价;(2)假设由于地形限制,该池的长和宽都不能超过,试设计污水池的长和宽,使总造价最低,并求出最低总造价72函数,. (1)当时,求函数的最小值;(2)假设对任意,恒成立,试求实数的取值范围73函数,且的解集为1求的值;2假设,且,求证:74正实数、满足条件,1求证:;2假设,求的最大值75,证明:76(1)求函数的最大值;(2)假设函数最大值为,求正数的值77假设对任意,恒成立,求的取值范围78本小题总分值12分我国发射的天宫一号飞行器需要建造隔热层.天宫一号建造的隔热层必须使用年,每厘米厚的隔热层建造本钱是万元,天宫一号每年的能源消消耗用万元与隔热层厚度厘米满
10、足关系式:,假设无隔热层,那么每年能源消消耗用为万元.设为隔热层建造费用与使用年的能源消消耗用之和.I求和的表达式;II当陋热层修建多少厘米厚时,总费用最小,并求出最小值.79(14分)某公司在安装宽带网时,购置设备及安装共花费万元.该公司每年需要向电信部门交纳宽带使用费都是万元,公司用于宽带网的维护费每年各不同,第一年的维护费是万元,以后每年比上一年增加万元. 1该公司使用宽带网满年时,累计总费用含购置设备及安装费用在内是多少?2该公司使用宽带网多少年时,累计总费用的年平均值最小?80某化工企业年底投入万元,购入一套污水处理设备该设备每年的运转费用是万元,此外每年都要花费一定的维护费,第一年
11、的维护费为万元,由于设备老化,以后每年的维护费都比上一年增加万元(1)求该企业使用该设备年的年平均污水处理费用 (万元);(2)为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?81,求证:.82设,式中变量满足以下条件:求的最大值和最小值83设函数.1假设不等式的解集为,求的值;2假设存在,使,求的取值范围.84某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,其他各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口如图设矩形的长为米,钢筋网的总长度为米1列出与的函数关系式,并写出其定义域;2问矩形的长与宽各为多少米时,所用的钢筋网的
12、总长度最小?3假设由于地形限制,该球场的长和宽都不能超过米,问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?85均为正数,证明:,并确定为何值时,等号成立仅供学习参考本卷由系统自动生成,请仔细校对后使用,答案仅供参考。参考答案1B【解析】由得得,所以,因为,所以当时,有最小值,选B.2C【解析】由题意知,即,所以。所以,当且仅当,即时,取等号,所以最小值为4,选C.3C试题分析:因为,所以,选C.考点:利用根本不等式比拟大小4B【解析】g(x)=x+-12-1=1,当且仅当x=1时,等号成立, f(x)在x=1处有最小值1, 即p=-2,12-2×1+q=1,q=2, f(x)
13、=x2-2x+2=(x-1)2+1, f(x)max=f(2)=(2-1)2+1=2.5B试题分析:,当且仅当时取等号,因此最小值为2,选A.考点:根本不等式求最值【易错点睛】在利用根本不等式求最值时,要特别注意“拆、拼、凑等技巧,使其满足根本不等式中“正即条件要求中字母为正数、“定不等式的另一边必须为定值、“等等号取得的条件的条件才能应用,否那么会出现错误.6C试题分析:实数满足,可得,所以可设,那么,所以,所以时,原式取最大值;所以时,原式取最小值,应选C.考点:圆的方程;圆的最值问题.【方法点晴】此题主要考查了圆的方程及其应用问题,其中解答中涉及圆的标准方程、圆的一般方程、圆的参数方程、
14、以及三角函数的最值问题等知识点的的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,解答中根据圆表示方程,利用圆的参数方程,转化为三角函数的求最值是解答关键,属于中档试题.7B试题分析:由题意得,当且仅当时等号成立,所以的最小值是,应选B考点:根本不等式求最值8A试题分析:,最大值为考点:不等式性质9A【解析】由,得,即,所以,由,当且仅当,即,取等号,所以最小值为4,选A.10B【解析】由题意可知42a7,得,即实数a的最小值为,应选B.11B试题分析:设那么有即的最大值为2.考点:根本不等式12B试题分析:依题意可得,当且仅当时“=成立,所以函数的最小值为,选.考点:根
15、本不等式,新定义问题.13B【解析】依题意知直线axby10过圆C的圆心(1,2),即a2b1,由1a2b2 ,ab,应选B.14A【解析】由可知方程ax22xb0(a0)有两个相等的实数解,故0,即ab1.(ab),因为a>b,所以(ab)2.15B试题分析:依题意问题转化为,求的最小值。因为且,当且仅当时“=成立。故B正确。考点:1新概念;2根本不等式。16C【解析】a2+a2+=a2+4,当且仅当即a=,b=时,等号成立.应选C.17D【解析】由2=a+b2得1,ab1,所以选项A、C不恒成立,+=2,选项B也不恒成立,a2+b2=(a+b)2-2ab=4-2ab2恒成立.应选D.
16、18C【解析】由题得z+3xy=x2+4y24xy(x,y,z>0),即zxy,1.当且仅当x=2y时等号成立,那么x+2y-z=2y+2y-(4y2-6y2+4y2)=4y-2y2=-2(y2-2y)=-2(y-1)2-1=-2(y-1)2+2.当y=1时,x+2y-z有最大值2.应选C.19C【解析】由可得+=·(+)=+2+2=,当且仅当a=,b=时取等号,即+的最小值是.20C试题分析:由于,那么,所以,当且仅当,由于,即当时,上式取等号,因此函数的最小值为,应选C.考点:根本不等式21C试题分析:设,那么,依题意可得,所以即也就是当且仅当即时等号成立,所以,应选C.考
17、点:1.直线的方程;2.根本不等式.22B试题分析:根据,有,由联立,消去得,当;当,所以.考点:方程组思想求函数解析式;均值不等式;23试题分析:根据,有,由联立,消去得,当;当,所以.考点:方程组思想求函数解析式;均值不等式;24C试题分析:当都是负数时,不成立,当一正一负时,不成立,当时,不成立,因此只有是正确的.考点:根本不等式.25A试题分析:设该设备第的营运费用为万元,那么数列是以为首项,以为公差的等差数列,那么,那么该设备到第年的营运费用总和为,设第的盈利总额为万元,那么,因此,该设备年平均盈利额为,当且仅当且当,即当时,该设备年平均盈利额到达最大值,此时,应选A.考点:1.数列
18、求和;2.根本不等式26C试题分析:设,由条件可知和为等直角三角形,所以,即4,所以,所以绿地面积最大值为4,应选C考点:根本不等式在实际中的应用27B试题分析:,故A恒成立;,取,时B不成立;,故C恒成立;假设,那么恒成立,假设,那么,恒成立,应选B考点:1、不等式的性质;2、根本不等式28B试题分析:,故A恒成立;,取,时B不成立;,故C恒成立;假设,那么恒成立,假设,那么,恒成立,应选B考点:1、不等式的性质;2、根本不等式29D【解析】,当且仅当,即,即时取等号,所以最小值为4,选D.30D试题分析:应用根本不等式所具备的条件是:一正、二定、三相等.由,当取等号时.所以不成立,所以选项
19、A不正确. 假设那么.所以B选项不正确. ,但是可以小于零,所以C选项不正确.由,所以都大于零,所以D正确.应选D.考点:1.根本不等式的应用.2.三角函数的知识.3.对数的知识.4.不等式的性质.31B【解析】由得log2(m-2)+log2(2n-2)=3,即log2(m-2)(2n-2)=3,因此于是n=+1.所以m+n=m+1=m-2+32+3=7.当且仅当m-2=,即m=4时等号成立,此时m+n取最小值7.32C【解析】不等式x22x<对任意a,b(0,)恒成立,等价于x22x<min,由于28(a4b时等号成立),x22x<8,解得4<x<2.33试题
20、分析:因为函数过点,把点带入函数可得,所以.当且仅当时取等号.故填考点:根本不等式34试题分析:不等式等价于,即又均值不等式不成立令故,所以,因为最小值大于,在中,可以取等号,故,解得或,所以答案为.故填.考点:根本不等式恒成立问题35试题分析:由定义运算“*可知 ,画出该函数的图像如下图,从而可得,又因为要有三个不同的解,所以,所以,所以的取值范围是.考点:1.函数的零点;2.新定义新运算;3.根本不等式.36【解析】【思路点拨】将用a,b表示,利用根本不等式求最值.S1=·2a·2b=2ab,S2=·2· 2=2(a2+b2),=(a>0,b&
21、gt;0), =(当且仅当a=b时取等号).37试题分析:因为,所以,所以.所以答案应填:考点:根本不等式3825试题分析:,当且仅当时等号成立,所以最小值为25考点:不等式性质398试题分析:利用向量垂直的充要条件:数量积为0,得到x,y满足的等式;利用幂的运算法那么将待求的式子变形;利用根本不等式求出式子的最小值,注意检验等号何时取得解:4x1+2y=0即4x+2y=4= 当且仅当24x=22y即4x=2y=2取等号故答案为8点评:此题考查向量垂直的充要条件:数量积为0;考查利用根本不等式求函数的最值需注意满足的条件:一正、二定、三相等403试题分析:法一:由可得,所以当且仅当即时等号成立
22、;法二:当且仅当即时等号成立.考点:根本不等式及其应用.419试题分析:.考点:重要不等式及不等式的解法.4236【解析】根据·2,BAC30°,得|·|4,故ABC的面积是|·|sin 30°1,即xyz1.f(x,y,z)(xyz) 1414461236.当且仅当y2x,z3x,3y2z时,等号成立43试题分析:由函数定义域可知为正数,根据均值不等式,恒成立即可.考点:均值不等式求最值.443、4【解析】2成立当且仅当a,b均为正数且时等号成立.故1错;当时等号成立.故2错;当时等号成立.故3对;当时等号成立.故4对.4518【解析】根据题
23、意·=|cosBAC=2, 可得|=4,所以SABC=|sinBAC=×4×=1, 那么+x+y=1, 即x+y=,所以+=2(x+y)·(+)=2(1+4+) 2×(5+4)=18. 当且仅当=,即x=,y=时取等号.462-log23【解析】设m=2a,n=2b,x=2c, 那么m+n=mn, 即+=1(m>0,n>0),那么由2a+2b+2c=2a+b+c 得mn+x=mnx, (mn-1)x=mn, x=, x=,又+=12, ,-, 1-, x=, 即2c,clog2=2-log23.当且仅当m=n=2,即a=b=1时,c
24、取得最大值为2-log23.47试题分析:因为过坐标原点的一条直线与函数的图像交于P、Q两点,那么线段PQ长,由对称性只要研究局部,设,所以,所以当且仅当时取等号.所以的最小值为.故填.考点:1.直线与双曲线的关系.2.两点间的距离.3.根本不等式的应用.48试题分析:依题意可知,其中,由根本不等式可知即当且仅当时等号成立,所以,所以围成的菜园最大面积是.考点:根本不等式的应用.49(,4【解析】ab1,且a、b为两个正数,(ab)2224.要使得恒成立,只要4.504试题分析:因为所以,当且仅当即时取。考点:根本不等式。51【解析】2x(x)yz,x,x2x52【解析】9x2 6a,所以6a
25、a1,即a536【解析】函数f(x)x (x>2)的图象过点A(3,7),即73a,a4.x2>0,f(x)(x2)2226,当且仅当x4时等号成立,故此函数的最小值是6.5418【解析】3x3y218,当且仅当xy时等号成立5534【解析】x<0,y33x3(3x)3234,当且仅当x时等号成立,故所求最小值为34.5630试题分析:由,所以,= ,.考点:根本不等式的应用579试题分析:因为,那么依题意可得。即,因为,那么,即。当且仅当时取。考点:1导数;2根本不等式。58【解析】设每小时的燃料费因为速度为海里/小时时,每小时的燃料费是元,所以费用总和为当且仅当时取等号.
26、考点:根本不等式求最值599试题分析:因为,当且仅当即时取等号,所以的最小值为9.考点:根本不等式求最值60试题分析:由得,变形为,因为,由根本不等式得,故,解得.考点:1、根本不等式;2、一元二次不等式的解法.619试题分析:因为,当且仅当即时取等号,所以的最小值为9.考点:根本不等式求最值6216试题分析:由,化为,整理为,均为正实数, ,解得,即,当且仅当时取等号,的最小值为16,故答案为:16考点:根本不等式639试题分析:由,得,当且仅当,即,也即时等号成立,故最小值是9考点:根本不等式649试题分析:由,得,当且仅当,即,也即时等号成立,故最小值是9考点:根本不等式65试题分析:由
27、函数的图象恒过定点A,所以有,即.所以,当且仅当且时,的最小值为.考点:对数函数的图象和性质,根本不等式的应用.66试题分析:,=,当且仅当=取等号,故最小值为.考点:1.利用根本不等式求最值;2.转化与化归思想.67试题分析:设该公园应建在距A化工厂公里处,两化工厂对其污染指数为,那么,那么,因,故,当且仅当,即时取等号.考点:1、函数解析式;2、根本不等式.682试题分析:设那么有即的最大值为2.考点:根本不等式69试题分析:因为,所以因为,所以考点:根本不等式应用70【解析】方法一:令ytx,那么t>0,代入不等式得x22tx2a(x2t2x2),消掉x2得12ta(1t2),即a
28、t22ta10对t>0恒成立,显然a>0,故只要44a(a1)0,即a2a10,考虑到a>0,得a.方法二:令ytx,那么a,令m12t>1,那么t,那么a,故a.711当长为16.2m,宽为10m时总造价最低,最低总造价为38880元2当长为16m,宽为10m时,总造价最低,为38882元【解析】(1)设污水处理池的宽为xm,那么长为m总造价为f(x)400×248×2x80×1621296x129601296129601296×21296038880元当且仅当x(x>0),即x10时取等号当长为16.2m,宽为10m时总
29、造价最低,最低总造价为38880元(2)由限制条件知10x16.设g(x)x,由函数性质易知g(x)在上是增函数,当x10时(此时16),g(x)有最小值,即f(x)有最小值1296×1296038882(元)当长为16m,宽为10m时,总造价最低,为38882元72162【解析】(1)由a4,f(x)x26,当x2时,取得等号即当x2时,f(x)min6.(2)x1,), >0恒成立,即x1,),x22xa>0恒成立等价于a>x22x,当x1,)时恒成立,令g(x)x22x,x1,),a>g(x)max12×13,即a>3.a的取值范围是.7
30、312详见解析试题分析:1根据绝对值不等式的公式求的解集,因为解集又为,根据对应相等可得的值.2由1知.根据柯西不等式或根本不等式证明即可.试题解析:解:1因为,所以等价于, 2分由有解,得,且其解集为 4分又的解集为,故 5分2由1知,又, 7分 9分(或展开运用根本不等式) 10分考点:1绝对值不等式;2柯西不等式;3根本不等式.741 详见解析;21试题分析:1 根据一般形式的柯西不等式证明.2根据根本不等式可得.可将转化为,转化为关于的一元二次不等式.试题解析:证:1代入 当且仅当 ,取等号。 5分2由得,假设,那么,所以,当且仅当 时,有最大值1。 10分考点:1柯西不等式;2根本不
31、等式.75证明见解析.试题分析:直接利用算术几何平均不等式可得,两式相乘即得要证不等式试题解析:,,.【考点】算术平均值几何平均不等式761222【解析】(1)()2(11)(x15x)8,2.当且仅当1·1·即x3时,ymax2.(2)(a)22(a24)(x1x)(a24),由(a24)20得a±2,又a>0,a2.77a【解析】a对任意x>0恒成立,设ux3,只需a恒成立即可x>0,u5(当且仅当x1时取等号)由u5,知0< ,a.78解:IC, ;II隔热层修建5厘米厚时,总费用到达最小值,最小值为70万元. 【解析】不能直接用均值
32、定理,需把6x转换为3x+5的形式,在用均值定理。解:I当时,C=8,所以=40,故C3分 6分II9分当且仅当时取得最小值.11分即隔热层修建5厘米厚时,总费用到达最小值,最小值为70万元.12分791使用5年时累计总费用为9万元. 2使用10年时,宽带网累计总费用的年平均值最少 【解析】第一问中利用等差数列的求和公式得到。宽带网维护费组成以0.1万元为首项,公差为0.1万元的等差数列所以使用5年时累计总费用为第二问中,设使用年时,宽带网累计总费用的年平均值为万元,可得 结合均值不等式得到结论。解:1宽带网维护费组成以0.1万元为首项,公差为0.1万元的等差数列1分所以使用5年时累计总费用为 5分 所以,使用5年时累计总费用为9万元. 6分2设使用年时,宽带网累计总费用的年平均值为万元,可得 10分 12分当且仅当,即时等号成立,此时取最小值 13分所以,使用10年时,宽带网累计总费用的年平均值最少 14分80(1) yx1.5(x0) (2)10年【解析】(1)y,即yx1.5(x0)(2)由均值不等式得yx1.521.521.5,当且仅当x,即x10时取到等号,故该企业10年后需要重新更换新设备81见解析【解析】原不等式等价于(xy)24xy,即(xy)20,显然成立故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上海租房合同模板标准版
- 急症晕厥试题及答案
- 肩周炎相关试题及答案
- 《2025年工程合同管理与履行策略解析》
- 桥梁工程方案地质(3篇)
- 酒吧加固改造工程方案(3篇)
- 2025年走进鱼类世界题库及答案
- 基质金属蛋白酶抑制-第2篇-洞察及研究
- 揭阳降水井工程方案(3篇)
- 智能辅助决策系统-洞察及研究
- 2025-2030全球宠物电器行业发展趋势分析及投资前景预测研究报告
- 吸痰护理操作课件
- 2025年全国企业员工全面质量管理知识竞赛题库及答案(共90题)
- 2025年天津市专业人员继续教育试题及答案3
- 主要诊断及主要手术的选择原则
- 2024年急危重症患者鼻空肠营养管管理专家共识
- 医学教材 《中国高尿酸血症相关疾病诊疗多学科专家共识(2023年版)》解读课件
- 2024版债务处理咨询服务协议
- 《我们走在大路上》 课件 2024-2025学年湘教版初中美术七年级上册
- 2024年八年级物理上册必背考点113条背记手册
- 供应链安全风险评估
评论
0/150
提交评论