


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、圆锥曲线1.圆锥曲线的定义:(1) 已知定点已(3,0), F2 (3,0),在满足下列条件的平面上动点P的轨迹中是(2) 方程6)2 y2(x 6)2 y2 8表示的曲线是2.圆锥曲线的标准方程2 2(1)已知方程 y1表示椭圆,则k的取值范围为3 k 2 k(2)若x,y R,且3x2 2y26,则x y的最大值是 222 2,x y的最小值是(1)双曲线的c 5,且与椭圆 上 1有公共焦点,则该双曲线的方程a 294(2)设中心在坐标原点 O,焦点F1、F2在坐标轴上, - .2的双曲线 C过点aP(4, . 1C),则C的方程为3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断)
2、2x1如已知方程1表示焦点在y轴上的椭圆,贝U m的取值范围是 m4.圆锥曲线的几何性质2如(1)若椭圆5 mf1的离心率c也0,则m的值是a 5(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为 的最小值为1时,则椭圆长轴如(1)双曲线的渐近线方程是3x2y0,则该双曲线的-a- ,2 ,2,则两条渐近线夹角a2 2中,(2) 设双曲线 笃 占 1 (a>0,b>0)a b5。直线与圆锥曲线的关系女口( 1)若直线y=kx+2与双曲线x2-y(2)直线ykx 仁0与椭圆2=62 2x y5 m的右支有两个不同的交点,则k的取值范围是1恒有公共点,则m的取值范围是x2(3)
3、 3)过双曲线-1则这样的直线有条(2) 已知抛物线方程为的焦点的距离等于;(3) 若该抛物线上的点2x25(4)点P在椭圆y21的右焦点直线交双曲线于A、B两点,若|AB|= 4,8X,若抛物线上一点到 y轴的距离等于到焦点的距离是 4,则点M的坐标为5,则它到抛物线1上,它到左焦点的距离是它到右焦点距离的两倍,贝U点的横坐标为(5)抛物线y2距离为2x上的两点A、B到焦点的距离和是 5,则线段AB的中点到y轴的MP2 2(6)椭圆Z 1432MF之值最小,则点6、焦点三角形如 (1)短轴长为.5 ,内有一点P(1, 1) , F为右焦点,在椭圆上有一点的坐标为M,使2-的椭圆的两焦点为 F
4、1、F2,过F1作直线交椭圆于 A、3b两点,贝y(2)设ABF2的周长为P是等轴双曲线 x2 y2 a2(a 0)右支上一点,Fi、F2是左右焦点,若PF2 F1F20 , |PF1|=6,则该双曲线的方程为2 2(3) 椭圆1的焦点为F1、F2,点P为椭圆上的动点,当PF2PF1<0时,点94P的横坐标的取值范围是 rFi的直线与双曲线(4) 双曲线的虚轴长为 4, - =6 , F1、F2是它的左右焦点,若过a 2的左支交于 A B两点,且 AB 是AF2 与 BF2I等差中项,则 AB = _(5) 已知双曲线的£为2, F1、F2是左右焦点,P为双曲线上一点,且 F1
5、PF2 60 ,aPF1F212.3 求该双曲线的标准方程22l如与双曲线 仝 1有共同的渐近线,且过点 (3,2 3)的双曲线方程为9167、弦长公式:如(1)过抛物线y2=4x的焦点作直线交抛物线于A (X1, y1), B (X2,y2)两点,若 X1+X2=6,那么|AB|等于A、B两点,已知|AB|=10 , O为坐标(2)过抛物线y2 2x焦点的直线交抛物线于原点,则 ABC重心的横坐标为 8、圆锥曲线的中点弦问题:2x36遇到中点弦问题常用“韦达定理”或“点差法”求解。如(1)如果椭圆2y_91弦被点A(4,2)平分,那么这条弦所在的直线方程是(2)已知直线AB的中点在直线 L
6、:2占 1(a b 0)相交于A、B两点,且线段bx 2y=0上,则此椭圆的方程为 y= x+12与椭圆X2a23)试确定m的取值范围,使得椭圆 42-1上有不同的两点关于直线 y 4x m对称39.动点轨迹方程如已知动点P到定点F(1,0)和直线x 3的距离之和等于 4,求P的轨迹方程.待定系数法:已知所求曲线的类型,求曲线方程一一先根据条件设出所求曲线的方程, 再由条件确定其待定系数。如线段AB过x轴正半轴上一点 M (m, 0) (m 0),端点A、B到x轴距离之积为 2m,以x轴为对称轴,过 A、0、B三点作抛物线,则此抛物线方程为 定义法:先根据条件得出动点的轨迹是某种已知曲线,再由
7、曲线的定义直接写出动点的轨迹方程;女如(1)由动点P向圆x2 y2 1作两条切线PA PB,切点分别为 A B,Z APB=60,则 动点P的轨迹方程为(2)点M与点F(4,0)的距离比它到直线l:X 5 0的距离小于1,则点M的轨迹方程是;1 , 2 2 2 2(3) 一动圆与两圆O M x y 1和O N: x y 8x 12 0都外切,则动圆圆 心的轨迹为代入转移法:动点P(x, y)依赖于另一动点Q(x0,y0)的变化而变化,并且 Q(x0,y0) 又在某已知曲线上,则可先用x, y的代数式表示x0,y0 ,再将x0,y0代入已知曲线得要求的轨迹方程;如动点P是抛物线y 2x2 1上任一点,定点为 A(0, 1),点M分PA所成的比为2, 则M的轨迹方程为参数法:当动点P(x, y)坐标之间的关系不易直接找到,也没有相关动点可用时,可 考虑将x,y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。女口(1)AB是圆O的直径,且|AB|=2a,M为圆上一动点,作MNL AB 垂足为N,在OM上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国广电鄂州市2025秋招笔试行测题库及答案通信技术类
- 安全知识培训会议标语课件
- 本册综合教学设计-2025-2026学年中职英语基础模块第三册高教版
- 第三单元第1课 凝练的视觉符号 说课稿 人教版初中美术七年级下册
- 2024新教材高中历史 第三单元 商业贸易与日常生活 第7课 古代的商业贸易说课稿 部编版选择性必修2
- 5.2《长方形和正方形的面积计算》教学设计-人教版三年级数学下册
- 教学设计及反思蛋白质
- 海关日常安全培训课件
- 海关协管员安全培训课件
- 第四课 幸福和睦的家庭教学设计初中道德与法治统编版五四学制2024六年级全一册-统编版五四学制2024
- 2025年南网春招笔试试题及答案
- 2025餐饮业简易劳动合同范本下载
- 南通蓝浦环评报告书
- 商户维护与管理办法
- 2025至2030中国金属铬行业产业运行态势及投资规划深度研究报告
- 2025年陕西省中考英语试题卷(含答案及解析)
- cma资料培训课件
- 专利代理所管理制度
- 农村道路交通宣传课件
- DZ/T 0275.5-2015岩矿鉴定技术规范第5部分:矿石光片鉴定
- 2025年新教材道德与法治三年级上册第二单元《学科学爱科学》教案设计
评论
0/150
提交评论