下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题、圆形有界磁场中“磁聚焦”的相关规律练习当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。规律二:平行射入圆形有界磁场的相同带电粒 子,如果圆形磁场的半径与圆轨迹半径相等,则所有粒子都从磁场边界上的同一点射出,并且出射点的切线与入射速度方向平行,如乙图所示。【典型题目练习】1如图所示,在半径为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板.从圆形磁场最高点 P垂直磁场射入大 量的带正电,电荷量为 q,质量为m,速度
2、为v的粒子,不考虑粒子间 的相互作用力,关于这些粒子的运动以下说法正确的是()A .只要对着圆心入射,出射后均可垂直打在MN上B .对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D .只要速度满足v qBR,沿不同方向入射的粒子出射后均可垂直打在MN上m2. 如图所示,长方形 abed的长ad=0.6m,宽ab=0.3m , 0、e分别是ad、be的中点,以e为圆心eb为半径的四分之一圆弧和以 0为圆心0d为半径的四分之一 圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场)磁感应强度B=0.25T。一群不计重力、质
3、量 m=3X10-7kg、电荷量 q=+2 X10-3C的带正电粒子以速度 v=5 X102m/s沿垂直ad方向且垂 直于磁场射人磁场区域,则下列判断正确的是()A .从0d边射入的粒子,出射点全部分布在 0a边 B .从aO边射入的粒子,出射点全部分布在 ab边C .从Od边射入的粒子,出射点分布在ab边D .从ad边射人的粒子,出射点全部通过b点3. 如图所示,在坐标系 xOy内有一半径为a的圆形区域,圆心坐标为 O1 (a, 0),圆内分 布有垂直纸面向里的匀强磁场,在直线y=a的上方和直线x=2a的左侧区域内,有一沿 x轴负方向的匀强电场,场强大小为 E, 质量为m、电荷量为+q (q
4、>0)的粒子以速度 v从O 点垂直于磁场方向射入,当入射速度方向沿x轴方向时,粒子恰好从 O1点正上方的A点射出磁场,不计粒子重力,求:(1) 磁感应强度B的大小;(2) 粒子离开第一象限时速度方向与y轴正方向的夹角;(3) 若将电场方向变为沿y轴负方向,电场强度大小不变,粒子以速度v从O点垂直于磁场方向、并与x轴正方向夹角9=30°射入第一象限,求粒子从射入磁场到最终离开磁场的总时间to4. 如图所示的直角坐标系中,从直线 x=?2lo到y轴区域存在两个大小相等、方向相反的有 界匀强电场,其中 x轴上方的电场方向沿 y轴负方向,x轴下方的电场方向沿 y轴正方向。i*EJ /1
5、oycat*L 1c未t和匀强电场的电场强度 E的大小。在电场左边界从 A( ?2lo, ?|o)点到C( ?2lo, 0) 点区域内,连续分布着电量为 +q、质量为m的 粒子。从某时刻起,A点到C点间的粒子依次连 续以相同速度 V0沿x轴正方向射入电场。从 A 点射入的粒子恰好从 y轴上的A( 0,?lo)点沿 沿x轴正方向射出电场, 其轨迹如图所示。不计 粒子的重力及它们间的相互作用。(1)求从AC间入射的粒子穿越电场区域的时间(2) 求在A、C间还有哪些坐标位置的粒子通过电场后也能沿x轴正方向运动(3) 为便于收集沿x轴正方向射出电场的所有粒子,若以直线x=2lo上的某点为圆心的圆形磁场
6、区域内,设计分布垂直于xOy平面向里的匀强磁场,使得沿x轴正方向射出电场的粒子经磁场偏转后,都能通过x=2lo与圆形磁场边界的一个交点。则磁场区域最小半径是多大相应的磁感应强度 B是多大5. 如图所示,在xoy坐标系中分布着三个有界场区:第一象限中有一半径为r=0.1m的圆形磁场区域,磁感应强度 Bi=1T,方向垂直纸面向里,该区域同时与x轴、y轴相切,切点分别为A、C;第四象限中,由y轴、抛物线FG ( y 10x2 x 0.025,单位:m)和直线 DH ( y x 0.425,单位:m)构成的区域中,存在着方向竖直向下、强度E=2.5N/C的匀强电场;以及直线DH右下方存在垂直纸面向里的
7、匀强磁场B2=0.5T。现有大量质量m=1 X10-6kg (重力不计),电量大小为q=2X10-4 C,速率均为20m/s的带负电的粒子从 A处垂直磁场 进入第一象限,速度方向与y轴夹角在0至180°之间。(1 )求这些粒子在圆形磁场区域中运动的半径;(2)试证明这些粒子经过 x轴时速度方向均与 x轴垂直;(3 )通过计算说明这些粒子会经过y轴上的同一点,并求出该点坐标。6. 如图所示,真空中一平面直角坐标系 xOy内,存在着两个边长为 L的正方形匀强电场区 域I、n和两个直径为 L的圆形磁场区域川、W。电场的场强大小均为E,区域I的场强方 向沿x轴正方向,其下边界在 x轴上,右边
8、界刚好与区域n的边界相切;区域n的场强方向沿y轴正方向,其上边界在x轴上,左边界刚好与刚好与区域W的边界相切。磁场的磁感应 强度大小均为2,区域川的圆心坐标为(0, L )、磁场方向垂直于 xOy平面向外;区域W的圆心坐标为(0,2 )、磁场方向垂直于xOy平面向里。两个质量均为m、电荷量均为q的带正电粒子 M、N ,在外力约束下静止在坐标为(3L , - )、( 3L ,l )2224的两点。在x轴的正半轴(坐标原点除外)放置一块足够长的感光板,板面垂直于xOy平面。将粒子M、N由静止释放,它们最终打在感光板上并立即被吸收。 不计粒子的重力。求:(1) 粒子离开电场I时的速度大小。(2) 粒
9、子M击中感光板的位置坐标。(3) 粒子N在磁场中运动的时间。7. 如图所示,半圆有界匀强磁场的圆心 Oi在x轴上,OOi距离等于半圆磁场的半 径,磁感应强度大小为 Bi。虚线MN平行 x轴且与半圆相切于 P点。在 MN上方是 正交的匀强电场和匀强磁场,电场场强大 小为E,方向沿x轴负向,磁场磁感应强 度大小为B2。Bi, B2方向均垂直纸面,方向如图所示。有一群相同的正粒子,以相同的速 率沿不同方向从原点 O射入第I象限,其中沿x轴正方向进入磁场的粒子经过P点射入MN后,恰好在正交的电磁场中做直线运动,粒子质量为m,电荷量为q (粒子重力不计)。求:(1) 粒子初速度大小和有界半圆磁场的半径。
10、(2) 若撤去磁场B2,则经过P点射入电场的粒子从 y轴出电场时的坐标。(3) 试证明:题中所有从原点O进入第I象限的粒子都能在正交的电磁场中做直线运动。&如图甲所示,真空中有一个半径r=0.5m的圆形磁场,与坐标原点相切,磁场的磁感应强度大小B=2.0 x10?3t,方向垂直于纸面向里,在x=r处的虚线右侧有一个方向竖直向上的宽度L=0.5m的匀强电场区域,电场强度E=1.5 X03n/C,在x=2m处有一垂直x方向的足够长的荧光屏,从O点处向不同方向发射出速率相同的比荷q 1.0 109C/kg带负电的粒子,粒m子的运动轨迹在纸面内。 一个速度方向沿y轴正方向射入磁场的粒子 M,恰
11、能从磁场与电场的相切处进入电场。不计重力及阻力的作用。求:(1) 粒子M进入电场时的速度。(2) 速度方向与y轴正方向成30° (如图中所示)射入磁 场的粒子N,最后打到荧光屏上,画出粒子N的运动轨迹并 求该发光点的位置坐标。9.如图甲所示质量m=8.0 X0?25kg,电荷量q=1.6 X0?15C的带正电粒子从坐标原点O处沿xOy平面射入第一象限内,且在与x方向夹角大于等于 30。的范围内,粒子射入时的速度方向不同,但大小均为 V0=2.0 X07m/s。现在某一区域内加一垂直于xOy平面向里的匀强磁场磁感应强度大小 B=0.1T,若这些粒子穿过磁场后都能射到与y轴平行的荧光屏M
12、N上,并且当把荧光屏MN向左移动时,屏上光斑长度和位置保持不变。(n =3.14求:(1)粒子从y轴穿过的范围。(2 )荧光屏上光斑的长度。(3) 打到荧光屏 MN上最高点和最低点的粒子运动的时间差。(4) 画出所加磁场的最小范围(用斜线表示)参考答案1.当v丄B时,粒子所受洛伦兹力充当向心力,做半径和周期分别为R mV、T 口 的匀速圆周运动;只要速度满足qBqBqBR一一v时,在磁场中圆周运动的半径与圆形磁场磁场的半径mN相等,不同方向入射的粒子出射后均可垂直打在MN上,选项D正确。mv2.由R丽0.3m知,在磁场中圆周运动的半径与圆形磁场磁场的半径相等,从Oa入射的粒子,出射点一定在 b
13、点;从Od入射的粒子,经过四分之一圆周后到达be,由于边界无3解析:(1)当粒子速度沿x轴方向入射,从A点射出磁场时,几何关系知:r=a;2由 qvB m 知:Bmv mv qr qa(2 )从A点进入电场后作类平抛运动;沿水平方向做匀加速直线运动:沿竖直方向做匀速直线运动:Vy=V0;粒子离开第一象限时速度与y轴的夹角:tan001P02构成菱形,(3)粒子从磁场中的 P点射出,因磁场圆和粒子的轨迹圆的半径相等,故粒子从P点的出射方向与 OO1平行,即与y轴平行;轨迹如图所示;粒子从O到P所对应的圆心角为 也=600,粒子从P用时:t1T _a 6 3v。由几何知识可知,粒子由 P点到x轴的
14、距离Sasin粒子在电场中做匀变速运动的时间:2mvEq粒子磁场和电场之间匀速直线运动的时间:t32(avS)(23)a .;v磁场,将沿be做匀速直线运动到达 b点;选项D正确。粒子由P点第2次进入磁场,从 Q点射出,P O1QO3构成菱形;由几何知识可知Q点在x轴上,即为(2a, 0)点;粒子由P到Q所对应的圆心角 伍=120°,粒子从P到Q用时:3v 粒子从射入磁场到最终离开磁场的总时间:at t1 t2 t3 t4v(2. 3)a 2mv ovEq4.解析:(1)带电粒子在电场中做类平抛运动,沿水平方向匀速运动,有t纯V。从A点入射的粒子在竖直方向匀加速运动,由轨迹对称性性可
15、知I。Eq(y(2)设距C点为水平方向x竖直方向 yy处入射的粒子通过电场后也沿 x轴正方向,第一次达V。t 1当 t)22 mx轴用时t,有欲使粒子从电场射出时的速度方向沿 解得:y丄坐(h)2戈n 2 m v0nx轴正方向,有2I0 n 2 x(n =1, 2,3,)即在A、C间入射的粒子通过电场后沿x轴正方向的y坐标为y12 I0( n =1 , 2, 3,)n(3 )当n=1 时,粒子射出的坐标为n=2 时,Ly1y1 I0y24沿x轴正方向射出的粒子分布在粒子射出的坐标为n3寸,y2 5|0 ;R L处2 8若使粒子经磁场偏转后汇聚于一点,粒子 的运动半径与磁场圆的半径相等(如图)轨
16、迹圆与磁场圆相交,2形,由qv°B皿得:R则磁场的最小半径为5解析:(1)由 qvB1四边形PO1QO2为棱B 8mv05ql02vmv1x=r 2I0I 1*E111 yx=2 I0QO1 1CA*jTTv0f X z* iEy1到y之间(如图)y1到y2之间的距离为m一 知:R0.1mRB1(2)考察从A点以任意方向进入磁场的的粒子,设其从K点离开磁场,01和02分别是磁场区域和圆周运动的圆心,因为圆周运动半径和磁场区域半径相同,因此O1AO2K为菱形,离开磁场时速度垂直于 02K,即垂直于x轴,得证。(3)设粒子在第四象限进入电场时的坐标为(场时的坐标为(x,2),离开电场时速
17、度为 V2;在电场中运动过程,动能定理:Eq(y2 y1)其中y110x2x 0.0025, y x 0.4252在B2磁场区域做圆周运动的半径为R2,有qv2B2 m也 解得R2=xR2因为粒子在B2磁场区域圆周运动的半径刚好为轴上;又因V2的方向与DH成450,且直线中恰好经过四分之一圆周后刚好到达H处,x坐标值,则粒子做圆周运动的圆心必在yHD与y轴的夹角为45°,则所有粒子在此磁场H点坐标为(0, 0.425 )。6解析:(1)粒子在区域I中运动,由动能定理得 EqL imv2解得v。2EqLm2 有qv0B m,又有B 2 2mE ,解得rmv0 L qL "qB
18、 2因M运动的轨道半径与圆形磁场区域的半径相同,故M在磁场川中运动四分之一个周期后经过原点进入磁场W,再运动四分之一个周期后平行于x轴正方向离开磁场,进入电场n后做类平抛运动。假设M射出电场后再打在(2)粒子在磁场中做匀速圆周运动,x轴的感光板上,则M在电场n中运动的的时间Vo(1 分)沿电场方向的位移y 1at2 1 旦(-)222 m v0假设成立,运动轨迹如图所示。沿电场方向的速度Vyat(2 分)|速度的偏向角tan冬1v°2设射出电场n后沿x轴方向的位移xi.有XiL LtanM击中感光板的横坐标 x L L2(3) N做圆周半径与圆形磁场区域的半径相同,O离开磁场川进入磁
19、场W,然后从Xi2L ,位置坐标为(2L , 0)(1 分)在磁场川中,由几何关系 cos则9=30°,圆弧对应的圆心角粒子在磁场中运动的周期 T分析可得d点离开磁场W,L 22护1800?300=1502 L2V0N将从b点进入磁场川,从原点 沿水平方向进入电场n。轨迹如图。粒子在磁场川中运动的时间tl 360°T512ill.2qE由对称关系得粒子在磁场川、W中运动时间相等;故粒子在磁场中运动的时间t 2ti5 mLEq qvo B26 2qE7 解析:(1)粒子在正交的电磁场做直线运动,有解得vo b粒子在磁场Bi中匀速圆周运动,有 qv0B,2v m Rmv0mE解
20、得RqBi qBiB2R墮qBiB2由题意知粒子在磁场 Bi中圆周运动半径与该磁场半径相同,即(2 )撤去磁场B2,,在电场中粒子做类平抛运动,有水平方向匀加速R21 Eqt2m竖直方向匀速y v0tB22mREq从y轴出电场的坐标为(3)证明:设从 o点入射的任一粒子进入Bi磁场时,速度方向与x轴成B角,粒子出Bi磁场与半圆磁场边界交于 Q点,如图所示,找出轨迹圆心,可以看出四边形OO1O2Q四条边等长是平行四边形, 所以半径6Q与OOi平行。所以从Q点出磁场速度与O2Q垂直,即与x轴垂直,所以垂直进入 MN边界。进入正交电磁场 E、B2中都有Eq qv0B2故做直线运动。&解析:(
21、1)由沿y轴正方向射入磁场的粒子,恰能从磁场与电场的相切处进入电场可知粒子M在磁场中做匀速圆周运动的轨道半径R=r=0.5m。2 粒子M在磁场中匀速圆周运动有:qvB m R解得v1 106m/smN在磁场中转过120°角后从P点垂直电(2)由圆周运动的半径与圆形磁场的半径相等粒子场线进入电场,运动轨迹如图所示。在电场中运动的加速度大小 a 旦 1.5 1012m/s2m穿出电场的竖直速度 vy at aL 7.5 105m/ sv速度的偏转角tan 匕 0.75v在磁场中从P点穿出时距0点的竖直距离yr 1.5r 0.75m在电场中运动沿电场方向的距离y2 !at2 1Eq (L)2 0.1875m22 m v射出电场后匀速直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025西藏日喀则市萨嘎县招聘食品药品监管辅助人员2人笔试考试备考试题及答案解析
- 成都地理会考试题及答案
- 2025年虚假宣传法律防范策略试题及答案
- 2025游戏游艺产业政策环境变化与市场发展预测报告
- 2025游戏开发领域市场深度分析及用户体验与发展战略研究报告
- 公文写作模拟试题及答案
- 常用文言文考试题及答案
- 2025游戏动漫游戏动漫制作游戏动漫行业发展规划政府扶持政策开发成本收益规模竞争态势研究
- 青春梦想演讲稿三分钟
- 2025渔业养殖行业生产模式市场需求政策影响投资布局规划
- 2026年重庆安全技术职业学院单招职业技能测试题库附答案
- 2025年宝鸡麟游县殡仪馆及公益性公墓招聘(10人)笔试考试备考题库及答案解析
- 2025黑龙江鸡西兴凯物业管理有限公司招聘区属国有企业中层管理人员7人考试参考题库附答案解析
- 2025江苏镇江市京口产业投资发展集团有限公司招聘2人备考题库附答案详解(轻巧夺冠)
- 福建省福州市仓山区2024-2025学年三年级上学期期末数学试题
- 中医特色护理在急诊科的应用
- DB35T 2285-2025 低零碳工厂建设导则
- 新安全生产法2025年版全文
- 高层建筑火灾避险自救逃生学习课件
- (正式版)DB32∕T 5161-2025 《尘肺病康复站服务规范》
- 金属非金属矿山作业指导书
评论
0/150
提交评论