

下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1文档收集于互联网,已整理,word版本可编辑文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持 【关键字】方法高考压轴题:导数题型及解题方法(自己总结供参考) 一切线问题 题型1求曲线在处的切线方程。方法:为在处的切线的斜率。题型2过点的直线与曲线的相切问题。 方法:设曲线的切点,由求出,进而解决相关问题。注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。例已知函数f(x)=x3-3x.(1) 求曲线y=f(x)在点x=2处的切线方程;(答案:)(2)若过点A可作曲线的三条切线,求实数的取值范围、(提示: 设曲线上的切点 ();建立的等式关系。 将问题转化为关于的
2、方程有三个不同实数根问题。 (答案:的范围是)练习1.已知曲线(1)求过点(1,-3)与曲线相切的直线方程。答案:(或)(2)证明:过点(-2,5)与曲线相切的直线有三条。2.若直线与曲线相切,求的值.(答案:1) 题型3求两个曲线、的公切线。方法:设曲线、的切点分别为() 。(); 建立的等式关系, ,;求出,进而求出切线方程。解决问题的方法是设切点,用导数求斜率, 建立等式关系。例 求曲线与曲线的公切线方程。 (答案) 练习1.求曲线与曲线的公切线方程。 (答案或)2设函数,直线与函数的图象都相切,且与函数的图象相切于(1,0),求实数的值。 (答案或)二单调性问题题型1求函数的单调区间。
3、求含参函数的单调区间的关键是确定分类标准。分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系大概而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时, 与0的关系大概) ;(3)在求极值点的过程中,极值点的大小关系大概而引起的分 类;(4)在求极值点的过程中, 极值点与区间的关系大概而引起分类等。注意分类时必须从同一标准出 发,做到不重复,不遗漏。例 已知函数(1)求函数的单调区间。 (利用极值点的大小关系分类)(2)若,求函数的单调区间。 (利用极值点与区间的关系分类)练习 已知函数,若,求函数的单调区间。 (利用极值点的大小关系、及极值点与区间的关
4、系分类) 题型2已知函数在某区间是单调,求参数的范围问题。方法1:研究导函数讨论。方法2:转化为在给定区间上恒成立问题,方法3:利用子区间(即子集思想) ;首先求出函数的单调增区间或减区间,然后让所给区间是求的增 或减区间的子集。注意: “函数在上是减函数 ”与“函数的单调减区间是 ”的区别是前者是后者的子集。例 已知函数+在上是单调函数,求实数的取值范围(答案)练习 已知函数,且在区间上为增函数求实数的取值范围。 (答案:) 题型3已知函数在某区间的不单调,求参数的范围问题。方法1:正难则反,研究在某区间的不单调方法2:研究导函数是零点问题,再检验。方法3:直接研究不单调,分情况讨论。 例
5、设函数,在区间内不单调,求实数的取值范围。(答案:) 三极值、最值问题。文档来源为:从网络收集整理.word版本可编辑欢迎下载支持2文档收集于互联网,已整理,word版本可编辑题型1求函数极值、最值。基本思路:定义域T疑似极值点T单调区间T极值T最值。例已知函数,求在的极小值。(利用极值点的大小关系、及极值点与区间的关系分类)练习 已知函数的图象过点,且函数的图象关于y轴对称若,求函数在区间内的极值(答案:当时,有极大值,无极小值;当时,有极小值,无极大值;当或时,无极值)题型2已知函数极值,求系数值或范围。方法:1利用导函数零点问题转化为方程解问题,求出参数,再检验。 方法2.转化为函数单调
6、性问题。312p)x px p(1 p)x 1o0是函数f(x)的极值点。2四.不等式恒成立(或存在性)问题。一些方法1.若函数f (x)值域m,n,af (x)恒成立,则a n2.对任意X1m, n N m,n,f(xj g(X2)恒成立。则f(xjming(X2)max。3.对 洛m,n, X2m,n,f(xj g(X2)成立。则f(xjmaxg(X2)min。4.对X1m, n,,恒成立f(xj g(xj。转化f(xj g(xj 0恒成立4.对X1m,n,X2m,n,f(xj g(X2)成立。则f(Xjming(X2)min。5.对X1m,n,x2m,n,f (X1) g(X2)成立。则
7、f(X1)maxg(X2)max6.对x1m, n,x2m, n,f (X2)a成立。则构造函数t(x) f (x)ax。转化证明t(x)x1x2在m,n是增函数。 题型1已知不等式恒成立,求系数范围。方法:(1)分离法:求最值时,可能用罗比达法则;研究单调性时,或多次求导。(2)讨论法:有的需构造函数。 关键确定讨论标准。 分类的方法:在求极值点的过程中, 未知数的系数与o的关系不定而引起的分类;有无极值点引起的分类(涉及到二次方程问题时,与o的关系不定);极值点的大小关系不定而而引起的分类;极值点与区间的关系不定而引起分类。分类必须从同一标准出发,做到不重复,不遗漏。(3)数形结合:(4)
8、变更主元解题思路1.代特值缩小范围。2.化简不等式。3.选方法(用讨论法时,或构造新函数)。方法一:分离法。求最值时,可能用罗比达法则;研究单调性时,或多次求导。例 函数f (x) eX(x2lnx) a。在x 1,ef (x) e恒成立,求实数a取值范围。(方法:分离 法,多次求导答案:0,)例函数f(x)求实数p值。(答案:1) 练习已知函数f (x)15 ln,求a的取值范围。2axx2ln x,a R.若函数f (x)存在极值,且所有极值之和大(答案:4,)题型3已知最值,求系数值或范围。方法:1.求直接求最值;2.转化恒成立,求出范围,再检验。 例设aR,函数f (x) ax3值,求
9、a的取值范围.(答案:练习求实数已知函数f(x)a的取值范围。2ax (a(答案:1,23x.若函数g(x)6,一52)x ln x,当a)f(x) f (x), x 0,2,在x0处取得最大0时,函数f(x)在区间1,e上的最小值是2,3文档收集于互联网,已整理,word版本可编辑练习设函数f (x)用罗比达法则答案: 方法二:讨论法。有的需构造函数。文档来源为:从网络收集整理.word版本可编辑欢迎下载支持.x(ex1) ax2,若当x0时f(x)0,求a的取值范围。(方法:分离法,,1)关键确定讨论标准。分类的方法:在求极值点的过程中,未知数的系数与0的0的关系不定);极值关系不定而引起
10、的分类;有无极值点引起的分类(涉及到二次方程问题时,与点的大小关系不定而而引起的分类;极值点与区间的关系不定而引起分类。分类必须从同一标准出发, 做到不重复,不遗漏。例设函数f(x)=ex1 x2ax(答案:a的取值范围为.若当x0时f(x)0,求a的取值范围.1)2练习1.设函数f(x)xx 0时,f(x),求实数a的取值范围ax 1(答案:2.函数f (x) a In x0.对x0,ax(2In x) 1,求实数a取值范围。(多种方法求解。(答案:0,e)方法三:变更主元 例:设函数y0恒成立,3小2mx 3x6 2 a的最大值.上,g(x)4f(x) x;12数”,求bD上的导数为f(X
11、), 则称函数f (x)在区间y f (x)在区间f (x)在区间D上的导数为g(x), 若在区间D D上为“凸函数”,已知实数m是常数,若对满足m 2的任何一个实数m,函数f (x)在区间a,b上都为“凸函练习设函数f (x) xln(答案:x。证明:(提示f (a x) f (a) ex化为2)当a3时,对任意x 0,f(a x) f (a) ex成立。f(a x)x ae匸孕),研究g(a)丄単的单调性。)ee五.函数零点问题题型1:判断函数零点的个数。函数图象法;转化法;存在性定理13x3方法:方程法;例设a R, f (x)ax (1 a)ln x.若函数y f (x)有零点,求a的
12、取值范围.(提示:当a1时,f(1) 10,f( .3a)0,所以成立,答案 ,)3x In x图象的切线的个数。(答案:两条)练习.求过点(1,0) 题型2:已知函数零点,求系数。方法:图象法(研究函数图象与x轴交点的个数);方程法;转化法(由函数转化方程,再转化 函数,研究函数的单调性。)作函数一31例.函数f(x) In x x 1 a(x 1)在(1,3)有极值,求实数a的取值范围。(答案,181 2练习:1.证明:函数f(x) In x的图象与函数g(x)x的图象无公共点。e ex六.不等式证明问题方法1:构造函数,研究单调性,最值,得出不等关系,有的涉及不等式放缩。文档来源为:从网
13、络收集整理.word版本可编辑欢迎下载支持4文档收集于互联网,已整理,word版本可编辑5文档收集于互联网,已整理,word版本可编辑方法2:讨论法。方法2.研究两个函数的最值。如证f ( x )g ( x ), 需 证f ( x )的 最 小 值 大 于g ( x )的 最 大 值 即 可 。方法-一:讨论法例:已知函数f (x)-a In x-,曲线yf(x)在点(1,f(1)处的切线方程为x 2y 3 0。证明x 1x当x0,且x1时,f(x)In x。x 1练习 :.已知函数f(x)ax ex(a 0).当1a e 1时,.试讨论f (x)与x的大小关系。方法一二:构造函数2例:已知函数f(x) ax kbx(x 0)与函数g(x) ax blnx,a、b、k为常数,(1)若g(x)图 象上一点p(2, g(2)处的切线方程为:x 2y 2ln 2 2 0,设A(x“ yj, B(x2, y2),(为x2)是y2y函数y g(x)的图象上两点,g(乞)-,证明:为x0 x2x2x1练习:1.设函数f(x) xlnx。证明:当a3时,对任意x 0,f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络直播内容监管服务补充协议书
- 企业高端礼仪培训师长期聘用协议
- 动脉瘤病人护理
- 肢体活动障碍护理
- 初一常见传染病预防要点
- 城乡居民健康体检工作规范与实施方案
- 数据统计分析流程图培训
- 儿童骨折饮食护理
- 被害妄想护理措施
- 2025版高考物理一轮复习全程训练计划课练36机械振动机械波含解析
- 管道注水法试验记录
- 民用无人驾驶航空器系统驾驶员训练大纲
- 大树遮阳脚手架搭设方案
- “危大工程”验收标识牌
- 人民币的故事(课堂PPT)
- 生产异常及停线管理规范(1)
- 学生英语读写情况调查分析报告(二)
- 河北工业大学本科生体育课程考核管理办法-河北工业大学本科生院
- 病房发生火灾应急预案
- 热学李椿__电子
- 煤仓安全管理规范标准
评论
0/150
提交评论