版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、教教师师编编号号1 12 23 34 45 56 67 78 89 9101011111212131314141515教教师师编编号号随随机机数数教教师师编编号号随随机机数数教教师师编编号号随随机机数数1 10 0. .5 50 04 42 22 21 10 0. .9 92 23 32 23 30 0. .0 02 27 72 23701.842 20 0. .5 58 80 03 35 52 20 0. .3 35 56 67 75 50 0. .1 12 29 92 23700.893 30 0. .3 39 93 34 43 33 30 0. .0 02 27 72 27 70 0.
2、.2 20 08 82 23749.4954 40 0. .9 97 71 18 81 14 40 0. .6 69 95 54 49 90 0. .2 25 53 30 03706.2575 50 0. .8 84 43 39 95 55 50 0. .1 12 29 92 214140 0. .3 35 56 61 13651.7886 60 0. .4 46 66 61 18 86 60 0. .5 59 98 86 62 20 0. .3 35 56 67 73708.4057 70 0. .3 33 37 79 910107 70 0. .2 20 08 82 212120 0. .
3、5 59 97 78 83620.7098 80 0. .1 11 13 32 26 68 80 0. .9 96 61 12 26 60 0. .5 59 98 86 63635.8369 90 0. .9 93 33 36 610109 90 0. .2 25 53 30 011110 0. .6 61 12 22 23689.49210100 0. .9 92 22 22 21 110100 0. .7 74 44 43 315150 0. .6 64 49 94 43660.10811110 0. .8 83 33 33 36 611110 0. .6 61 12 22 24 40 0
4、. .6 69 95 54 43768.90512120 0. .4 40 05 58 8101012120 0. .5 59 97 78 810100 0. .7 74 44 43 33787.69713130 0. .3 37 72 28 83 313130 0. .8 85 58 89 913130 0. .8 85 58 89 93673.62514140 0. .5 56 61 10 05 514140 0. .3 35 56 61 11 10 0. .9 92 23 32 23714.63715150 0. .2 21 16 67 72 215150 0. .6 64 49 94
5、48 80 0. .9 96 61 12 23756.878有有放放回回抽抽样样:从从1 15 5名名教教师师中中随随机机区区5 5名名参参加加某某项项活活动动。工工具具数数据据分分析析抽抽样样数数据据区区域域$ $A A$ $1 1: :$ $A A$ $1 16 6;标标志志;随随机机样样本本数数:5 5输输出出区区域域确确定定无无放放回回抽抽样样:从从1 15 5名名教教师师中中随随机机区区5 5名名参参加加某某项项活活动动。1 1. .将将1 15 5名名教教师师编编号号,事事先先规规定定随随机机数数较较小小的的前前5 5名名位位被被选选对对象象。2 2. .用用R RA AN ND
6、D( () )产产生生1 10 0个个随随机机数数3 3. .为为避避免免随随机机变变化化,复复制制数数值值粘粘贴贴4 4. .排排序序选选取取前前5 5名名(简简单单操操作作:选选中中“随随机机数数”单单击击图图标标) )A A130.0716036720.0716036720.9645168680.9645168680.9645168680.9645168680.9645168680.9645168680.9645168680.964516868随随机机数数函函数数:均均匀匀分分布布1.RAND()产产生生最最低低0,最最高高1的的均均匀匀分分布布的的随随机机数数(F9改改变变)2.RAN
7、DBETWEEN(1,10)产产生生最最低低1,最最高高10的的均均匀匀分分布布的的随随机机数数3.公公式式“=低低值值+RAND()*(高高值值-低低值值)=RANDBETWEEN(低低值值,高高值值)”正正态态分分布布公公式式“=NORMINV(RAND(),均均值值,标标准准差差)=NORMINV(RAND(),3700,50)”产产生生正正态态分分布布随随机机数数二二项项分分布布公公式式“=CRITBINOM(试试验验次次数数,成成功功概概率率,临临界界值值)表表示示=CRITBINOM(20,0.7,RAND()”产产生生二二项项分分布布随随机机数数二二项项分分布布数数据据说说明明6
8、伯伯努努利利试试验验次次数数0.5每每次次试试验验成成功功的的概概率率0.75临临界界值值公公式式 说说明明(结结果果): :=CRITBINOM(6,0.5,0.75)=4 返返回回累累积积二二项项式式分分布布大大于于等等于于临临界界值值的的最最小小值值4有有放放回回抽抽样样:从从1 15 5名名教教师师中中随随机机区区5 5名名参参加加某某项项活活动动。工工具具数数据据分分析析抽抽样样数数据据区区域域$ $A A$ $1 1: :$ $A A$ $1 16 6;标标志志;随随机机样样本本数数:5 5输输出出区区域域确确定定无无放放回回抽抽样样:从从1 15 5名名教教师师中中随随机机区区5
9、 5名名参参加加某某项项活活动动。1 1. .将将1 15 5名名教教师师编编号号,事事先先规规定定随随机机数数较较小小的的前前5 5名名位位被被选选对对象象。2 2. .用用R RA AN ND D( () )产产生生1 10 0个个随随机机数数3 3. .为为避避免免随随机机变变化化,复复制制数数值值粘粘贴贴4 4. .排排序序选选取取前前5 5名名(简简单单操操作作:选选中中“随随机机数数”单单击击图图标标) )A A第第1 1组组第第2 2组组第第3 3组组第第4 4组组1 1- -0 0. .9 91 18 85 51 1. .1 17 71 18 80 0. .6 63 30 03
10、 30 0. .2 24 48 89 92 2- -0 0. .4 49 99 94 4- -2 2. .7 73 38 89 90 0. .7 77 79 90 0- -0 0. .4 40 08 84 43 3- -1 1. .8 89 98 86 6- -0 0. .8 81 17 73 3- -0 0. .1 15 50 07 7- -0 0. .0 06 62 28 84 40 0. .1 14 43 35 5- -1 1. .4 40 02 29 90 0. .5 56 62 21 1- -0 0. .9 93 38 86 65 5- -0 0. .4 48 80 04 4- -2
11、 2. .1 19 95 54 41 1. .7 73 34 49 9- -0 0. .5 59 97 76 66 60 0. .1 15 57 74 4- -0 0. .1 17 79 97 70 0. .9 94 45 54 40 0. .2 22 23 31 17 7- -1 1. .3 39 95 54 40 0. .9 97 70 04 40 0. .5 55 57 72 20 0. .4 46 67 74 48 8- -0 0. .1 10 07 77 7- -1 1. .1 15 51 14 4- -0 0. .0 05 54 40 00 0. .7 77 79 99 99 91
12、 1. .9 90 00 00 0- -2 2. .0 08 86 66 60 0. .7 79 98 87 72 2. .2 22 26 62 210100 0. .3 38 82 23 3- -1 1. .7 72 23 36 60 0. .6 67 77 77 7- -0 0. .3 31 13 35 5- -2 2. .3 33 39 99 91 12 2- -1 1. .1 19 90 06 69 99 92 2. .2 24 47 76 65 52 2- -0 0. .0 01 13 38 88 85 5- -1 1. .9 94 40 00 08 80 00 0. .1 11 1
13、5 54 42 24 4- -0 0. .4 44 42 27 79 90 0- -0 0. .2 27 74 42 24 42 2- -1 1. .0 03 36 69 96 65 52 2. .2 20 02 22 21 14 40 0. .8 82 23 38 81 11 11 1. .9 90 08 84 42 20 0- -0 0. .0 09 92 28 88 88 81 1. .4 47 73 34 45 52 2- -0 0. .8 86 66 65 56 64 4- -0 0. .0 09 98 84 49 98 80 0. .9 98 89 91 16 69 90 0. .
14、2 24 45 58 83 34 40 0. .9 99 95 59 92 29 9- -0 0. .0 07 73 30 08 82 2- -0 0. .6 66 68 85 52 24 4- -1 1. .1 12 23 30 03 37 70 0. .2 27 77 73 34 41 12 2. .2 21 10 00 07 72 2- -0 0. .1 14 42 25 57 77 70 0. .6 60 03 31 15 59 9- -1 1. .0 01 12 26 65 50 00 0. .8 86 64 41 11 15 5- -0 0. .7 77 77 73 32 29 9
15、1 1. .0 09 97 76 67 74 41 1. .0 07 76 62 26 66 61 1. .0 02 22 20 02 20 0- -0 0. .9 98 83 35 56 68 8- -0 0. .5 57 75 55 58 83 30 0. .0 01 19 92 24 40 0- -0 0. .7 79 97 74 46 61 1- -1 1. .6 61 14 49 92 26 61 1. .1 14 45 57 74 47 7- -0 0. .6 64 49 93 32 24 4- -0 0. .1 14 44 45 51 10 0- -1 1. .1 19 90 0
16、6 69 99 90 0. .1 11 15 54 42 24 42 2. .2 20 02 22 21 14 41 1. .4 47 73 34 45 52 20 0. .2 24 45 58 83 34 4- -1 1. .1 12 23 30 03 37 70 0. .6 60 03 31 15 59 91 1. .0 09 97 76 67 74 4- -0 0. .5 57 75 55 58 83 31 1. .1 14 45 57 74 47 72 2. .2 24 47 76 65 52 2- -0 0. .4 44 42 27 79 90 00 0. .8 82 23 38 8
17、1 11 1- -0 0. .8 86 66 65 56 64 40 0. .9 99 95 59 92 29 90 0. .2 27 77 73 34 41 1- -1 1. .0 01 12 26 65 50 01 1. .0 07 76 62 26 66 60 0. .0 01 19 92 24 40 0- -0 0. .6 64 49 93 32 24 4- -0 0. .0 01 13 38 88 85 5- -0 0. .2 27 74 42 24 42 21 1. .9 90 08 84 42 20 0- -0 0. .0 09 98 84 49 98 8- -0 0. .0 0
18、7 73 30 08 82 22 2. .2 21 10 00 07 72 20 0. .8 86 64 41 11 15 51 1. .0 02 22 20 02 20 0- -0 0. .7 79 97 74 46 61 1- -0 0. .1 14 44 45 51 10 0-2.339911589-1.940079528-1.614926077-1.190699095-1.123037237-1.036964932-1.012649591-0.983568498-0.866564278-0.797460871-0.777329205-0.668524081-0.649323511-0.
19、575582817-0.442789769-0.274242211-0.144509613-0.142576937-0.098498276-0.092887831-0.073082447-0.0138845730.019240360.1154239730.2458341440.2773413140.6031586960.8238112060.8641154640.9891687110.9959285311.022019661.0762664721.0976737031.1457473191.4734519031.9084200182.2022140912.2100721252.24765244
20、6自自动动生生成成4 4组组变变量量,每每组组1 10 0个个随随机机数数:4组变量每组10个量自自动动生生成成4 4组组变变量量,每每组组1 10 0个个随随机机数数:1.9599642.3909490639. 2)24,05. 0 ()24(05. 0= = =TINVt双双96. 1)975. 0 (MORMSINVZ21= = =- -下下a a0639. 2)24,05. 0 ()24(05. 0= = =TINVt双双96. 1)975. 0 (MORMSINVZ21= = =- -下下a aXf(X1)f(X2)f(X3)均均数数 标标准准差差-40.0001340.001713
21、641.18305E-05f(X)1f(X)10 01 1-3.90.0001990.002466551.78103E-05f(X)2f(X)2-1-10.90.9-3.80.0002920.003506682.65917E-05f(X)3f(X)31 11.11.1-3.70.0004250.004924283.93762E-05-3.60.0006120.006830095.78273E-05-3.50.0008730.009357268.42251E-05-3.40.0012320.012662210.000121664-3.30.0017230.016924210.000174298-
22、3.20.0023840.022343220.000247647-3.10.0032670.029135430.000348968-30.0044320.037526280.000487696-2.90.0059530.04774060.000675963-2.80.0079150.059989960.000929196-2.70.0104210.074457360.001266784-2.60.0135830.091279880.001712809-2.50.0175280.110530150.002296814-2.40.0223950.132197990.003054595-2.30.0
23、283270.156173470.004028953-2.20.0354750.182233420.005270375-2.10.0439840.210032790.006837568-20.0539910.239102730.00879777-1.90.0656160.268856360.011226757-1.80.078950.298603180.014208454-1.70.0940490.327572080.017834056-1.60.1109210.354942230.022200574-1.50.1295180.379880330.02740874-1.40.1497270.4
24、01582030.033560215-1.30.1713690.41931470.040754088-1.20.1941860.43245830.049082697-1.10.2178520.44054140.058626834-10.2419710.44326920.069450482-0.90.2660850.44054140.081595248-0.80.2896920.43245830.095074766-0.70.3122540.41931470.109869323-0.60.3332250.401582030.125921076-0.50.3520650.379880330.143
25、130171-0.40.368270.354942230.161352145-0.30.3813880.327572080.180396906-0.20.3910430.298603180.200029578-0.10.3969530.268856360.21997338600.3989420.239102730.2399146960.10.3969530.210032790.2595101520.20.3910430.182233420.2783957760.30.3813880.156173470.2961977270.40.368270.132197990.3125443050.50.3
26、520650.110530150.32707868943210-1-2-3-400.050.10.150.20.250.30.350.40.450.5Xf(X)f f( (X X) )1 1f f( (X X) )2 2f f( (X X) )3 3f f( (X X) )1 1= =N NO OR RM MD DI IS ST T( (x x, ,0 0, ,1 1, ,0 0) )= =N NO OR RM MD DI IS ST T( (A A2 2, ,$ $G G$ $2 2, ,$ $H H$ $2 2, ,0 0) )f f( (X X) )2 2= =N NO OR RM MD
27、 DI IS ST T( (x x, ,- -1 1, ,0 0. .9 9, ,0 0) )= =N NO OR RM MD DI IS ST T( (A A2 2, ,$ $G G$ $3 3, ,$ $H H$ $3 3, ,0 0) )f f( (X X) )3 3= =N NO OR RM MD DI IS ST T( (x x, ,1 1, ,1 1. .1 1, ,0 0) )= =N NO OR RM MD DI IS ST T( (A A2 2, ,$ $G G$ $4 4, ,$ $H H$ $4 4, ,0 0) ) 0 NORMDIST( 2,数数:正正态态分分布布的的
28、概概率率密密度度函函s sm m(0 0,1 1)(- -1 1,0 0. .9 9)(1 1,1 1. .1 1)) 0 x NORMDIST( x e21)x( f 22)x-(x-22,)(数数:正正态态分分布布的的概概率率密密度度函函s sm m= = - -p ps s= =s s1 1. .已已知知均均值值、标标准准差差2 2. .取取值值X X4 4, ,步步长长= =标标准准差差/ /1 10 03 3. .根根据据函函数数N NO OR RM MD DI IS ST T( ($ $A A2 2, ,$ $G G$ $2 2, ,$ $H H$ $2 2, ,0 0) )获获得
29、得正正态态分分布布曲曲线线数数据据0.60.3332250.091279880.3394717940.70.3122540.074457360.3494346220.80.2896920.059989960.3567294460.90.2660850.04774060.36117923610.2419710.037526280.36267481.10.2178520.029135430.3611792361.20.1941860.022343220.3567294461.30.1713690.016924210.3494346221.40.1497270.012662210.339471794
30、1.50.1295180.009357260.3270786891.60.1109210.006830090.3125443051.70.0940490.004924280.2961977271.80.078950.003506680.2783957761.90.0656160.002466550.25951015220.0539910.001713640.2399146962.10.0439840.001175950.2199733862.20.0354750.000797070.2000295782.30.0283270.000533630.1803969062.40.0223950.00
31、0352880.1613521452.50.0175280.000230490.1431301712.60.0135830.00014870.1259210762.70.0104219.4757E-050.1098693232.80.0079155.9642E-050.0950747662.90.0059533.7079E-050.08159524830.0044322.2769E-050.0694504823.10.0032670.000013810.0586268343.20.0023848.2734E-060.0490826973.30.0017234.8957E-060.0407540
32、883.40.0012322.8614E-060.0335602153.50.0008731.6519E-060.027408743.60.0006129.4196E-070.0222005743.70.0004255.3053E-070.0178340563.80.0002922.9514E-070.0142084543.90.0001991.6218E-070.01122675740.0001348.8022E-080.0087977743210-1-2-3-400.050.10.150.20.250.30.350.40.450.5Xf(X)f f( (X X) )1 1f f( (X X
33、) )2 2f f( (X X) )3 3f f( (X X) )1 1= =N NO OR RM MD DI IS ST T( (x x, ,0 0, ,1 1, ,0 0) )= =N NO OR RM MD DI IS ST T( (A A2 2, ,$ $G G$ $2 2, ,$ $H H$ $2 2, ,0 0) )f f( (X X) )2 2= =N NO OR RM MD DI IS ST T( (x x, ,- -1 1, ,0 0. .9 9, ,0 0) )= =N NO OR RM MD DI IS ST T( (A A2 2, ,$ $G G$ $3 3, ,$ $
34、H H$ $3 3, ,0 0) )f f( (X X) )3 3= =N NO OR RM MD DI IS ST T( (x x, ,1 1, ,1 1. .1 1, ,0 0) )= =N NO OR RM MD DI IS ST T( (A A2 2, ,$ $G G$ $4 4, ,$ $H H$ $4 4, ,0 0) ) 0 NORMDIST( 2,数数:正正态态分分布布的的概概率率密密度度函函s sm m(1 1,1 1. .1 1)Xf(X)F(X)均均数数标标准准差差-40.0001343.16712E-050 01 1-3.90.0001994.80963E-05-3.8
35、0.0002920.000072348-3.70.0004250.0001078-3.60.0006120.000159109-3.50.0008730.000232629-3.40.0012320.000336929-3.30.0017230.000483424-3.20.0023840.000687138-3.10.0032670.000967603-30.0044320.001349898-2.90.0059530.001865813-2.80.0079150.00255513-2.70.0104210.003466974-2.60.0135830.004661188-2.50.0175
36、280.006209665-2.40.0223950.008197536-2.30.0283270.01072411-2.20.0354750.013903448-2.10.0439840.017864421-20.0539910.022750132-1.90.0656160.02871656-1.80.078950.035930319-1.70.0940490.044565463-1.60.1109210.054799292-1.50.1295180.066807201-1.40.1497270.080756659-1.30.1713690.096800485-1.20.1941860.11
37、506967-1.10.2178520.135666061-10.2419710.158655254-0.90.2660850.184060125-0.80.2896920.211855399-0.70.3122540.241963652-0.60.3332250.274253118-0.50.3520650.308537539-0.40.368270.344578258-0.30.3813880.382088578-0.20.3910430.420740291-0.10.3969530.46017216300.3989420.50.10.3969530.5398278370.20.39104
38、30.5792597090.30.3813880.6179114220.40.368270.6554217420.50.3520650.6914624614 43 32 21 10 0- -1 1- -2 2- -3 3- -4 40 00 0. .1 10 0. .2 20 0. .3 30 0. .4 40 0. .5 50 0. .6 60 0. .7 70 0. .8 80 0. .9 91 1Xf(X)F(X)f f( (X X) )= =N NO OR RM MD DI IS ST T( (x x, , , ,0 0) )= =N NO OR RM MD DI IS ST T( (
39、A A2 2, ,$ $F F$ $2 2, ,$ $G G$ $2 2, ,0 0) )F F( (X X) )= =N NO OR RM MD DI IS ST T( (x x, , , ,1 1) )= =N NO OR RM MD DI IS ST T( (A A2 2, ,$ $F F$ $2 2, ,$ $G G$ $2 2, ,1 1) ) 1 x NORMDIST( dze 21(Z) dxe 21)x X( f(X) F ) 0 x NORMDIST( x e21)x( f 22z-x2)x-(x-x22)x-(x-22222,数数:正正态态分分布布的的累累计计分分布布函函,
40、)(数数:正正态态分分布布的的概概率率密密度度函函s sm m= =p p= =f f= =p ps s= = = =s sm m= = - -p ps s= = - -s s - -s s0.60.3332250.7257468820.70.3122540.7580363480.80.2896920.7881446010.90.2660850.81593987510.2419710.8413447461.10.2178520.8643339391.20.1941860.884930331.30.1713690.9031995151.40.1497270.9192433411.50.12951
41、80.9331927991.60.1109210.9452007081.70.0940490.9554345371.80.078950.9640696811.90.0656160.9712834420.0539910.9772498682.10.0439840.9821355792.20.0354750.9860965522.30.0283270.989275892.40.0223950.9918024642.50.0175280.9937903352.60.0135830.9953388122.70.0104210.9965330262.80.0079150.997444872.90.005
42、9530.99813418730.0044320.9986501023.10.0032670.9990323973.20.0023840.9993128623.30.0017230.9995165763.40.0012320.9996630713.50.0008730.9997673713.60.0006120.9998408913.70.0004250.99989223.80.0002920.9999276523.90.0001990.99995190440.0001340.999968329) 1 x NORMDIST( dze 21(Z) dxe 21)x X( f(X) F ) 0 x
43、 NORMDIST( x e21)x( f 22z-x2)x-(x-x22)x-(x-22222,数数:正正态态分分布布的的累累计计分分布布函函,)(数数:正正态态分分布布的的概概率率密密度度函函s sm m= =p p= =f f= =p ps s= = = =s sm m= = - -p ps s= = - -s s - -s s4 43 32 21 10 0- -1 1- -2 2- -3 3- -4 40 00 0. .1 10 0. .2 20 0. .3 30 0. .4 40 0. .5 50 0. .6 60 0. .7 70 0. .8 80 0. .9 91 1Xf(X)F
44、(X)f f( (X X) )= =N NO OR RM MD DI IS ST T( (x x, , , ,0 0) )= =N NO OR RM MD DI IS ST T( (A A2 2, ,$ $F F$ $2 2, ,$ $G G$ $2 2, ,0 0) )F F( (X X) )= =N NO OR RM MD DI IS ST T( (x x, , , ,1 1) )= =N NO OR RM MD DI IS ST T( (A A2 2, ,$ $F F$ $2 2, ,$ $G G$ $2 2, ,1 1) ) 1 x NORMDIST( dze 21(Z) dxe 21
45、)x X( f(X) F ) 0 x NORMDIST( x e21)x( f 22z-x2)x-(x-x22)x-(x-22222,数数:正正态态分分布布的的累累计计分分布布函函,)(数数:正正态态分分布布的的概概率率密密度度函函s sm m= =p p= =f f= =p ps s= = = =s sm m= = - -p ps s= = - -s s - -s s) 1 x NORMDIST( dze 21(Z) dxe 21)x X( f(X) F ) 0 x NORMDIST( x e21)x( f 22z-x2)x-(x-x22)x-(x-22222,数数:正正态态分分布布的的累累
46、计计分分布布函函,)(数数:正正态态分分布布的的概概率率密密度度函函s sm m= =p p= =f f= =p ps s= = = =s sm m= = l l= =l l= = =l l- -X0123456789 10 11 12 13 14 150.000000 0.050000 0.100000 0.150000 0.200000 0.250000 0.300000 0.350000 0.400000 P(X)f(X1)f(X2) 1 1. .已已知知 2 2. .取取值值X X= =0 0,1 1,2 2,3 3,1 15 5 3 3. .根根据据函函数数P PO OI IS SS
47、 SO ON N( ($ $A A2 2, ,$ $F F$ $2 2, ,0 0) )获获得得泊泊松松分分布布曲曲线线数数据据)()(的的均均值值)机机变变量量为为一一定定区区间间单单位位内内随随)(间间出出现现次次数数的的概概率率):位位时时间间、空空间间里里某某一一时时泊泊松松的的概概率率分分布布(单单 0 , 7 , 6POISSON 0 , ,x POISSON X ( 0)( 0,1,2x , ! xexXP x= =l l= =l l l l= =l l= = =l l- -编编号号样本个体值均均值值标标准准差差123453.730.64接接受受区区域域13.3844 3.633
48、0 5.1010 3.6518 3.49653.85340.7059均均值值的的23.7853 3.0307 4.1260 3.7958 3.73753.69510.4023均均值值标标准准差差34.4596 4.1869 3.2566 3.3746 4.59393.97430.62043.7302 0.2937144.5700 3.4502 4.9961 3.6439 3.22853.97770.764753.6126 4.1969 3.2352 3.5010 3.79063.66730.358164.5271 3.0477 3.3911 3.1470 4.05473.63350.63537
49、3.5728 3.0273 3.9970 4.4885 3.67313.75180.539984.5418 3.5642 3.5873 3.6981 4.78104.03450.580793.7213 3.8592 4.1844 3.2623 4.49663.90480.4682104.5129 3.8497 4.1772 3.7189 4.91374.23450.4889114.9873 4.3050 4.0246 3.2536 3.55764.02560.6742123.8217 4.7653 4.0038 4.0814 3.22533.97950.5527133.7139 4.5641
50、4.4901 4.2035 4.04474.20330.3453144.8331 2.7913 5.0701 2.9409 3.96733.92061.0478153.8760 4.7855 3.9092 3.4990 3.82223.97840.4798163.2055 3.6132 3.3647 2.5286 3.28393.19920.4049174.4171 2.4908 3.5402 3.6905 3.25703.47910.6990184.4898 3.6722 3.0890 3.9578 2.76943.59560.6848193.4292 3.2642 4.5657 2.414
51、4 3.69813.47430.7763203.2673 3.2045 5.2653 4.2975 2.26153.65921.1512 213.7694 3.6499 3.9262 3.4505 4.58813.87680.4339224.4433 4.7981 4.6822 4.5004 4.09154.50310.2703233.4625 3.4517 2.9997 4.2855 3.27773.49540.4797244.0221 3.5424 3.7501 4.0673 3.96863.87010.2199252.7941 3.1651 4.8096 3.1030 3.16863.4
52、0810.7986263.1892 3.5277 3.8155 4.8296 3.83413.83920.612610.96578273.6815 2.7548 4.0331 4.6197 3.25983.66980.7141282.9491 2.9472 3.8292 3.4714 3.40033.31940.3759293.2379 3.6289 4.6560 3.8181 4.01403.87100.5241304.2065 3.8692 3.5269 2.9381 3.77473.66310.4729313.1772 4.3738 4.4888 4.4273 2.73873.84120
53、.8220323.1458 3.2502 3.5771 4.3779 4.35193.74060.5918333.3336 2.2301 3.8659 4.3947 4.76093.71700.9911345.1269 4.1026 4.4910 3.6315 4.50854.37210.5531353.3466 3.7211 2.9442 3.9416 3.51063.49280.37952.2109 2.4751 2.7393 3.0035 3.2677 3.5319 3.7960 4.0602 4.3244 4.5886 4.8528 5.1170 5.3812 050100150200
54、250均值频数组组距距=(均均值值+2.58标标准准差差)-(均均值值-2.58标标准准差差)/25=22.58标标准准差差25(LN(1000)/LN(2)+1=10.965781 11 1最最小小值值=3.73-2.580.64=2.0788从从N(3.73,0.642)随随机机抽抽取取1000份份样样本本,每每份份5个个样样本本。求求每每份份样样本本的的均均值值和和标标准准差差,绘绘制制1000个个均均值值直直方方图图。解解:1000份份样样本本1.在在A3输输入入1编编辑辑填填充充序序列列序序列列产产生生在在:列列;终终止止值值:1000确确定定;2.由由NORMINV(RAND(),
55、$G$2,$H$2)产产生生第第一一个个样样本本;3.由由AVERAGE(B3:F3)及及STDEV(B3:F3)样样本本均均值值及及标标准准差差4.选选中中B3:H3右右健健复复制制选选中中B4Shift选选中中H1000粘粘贴贴5.由由AVERAGE(G3:G1002)及及STDEV(G3:G1002)样样本本均均值值的的均均值值及及样样本本均均值值的的标标准准差差均均值值的的直直方方图图:1.以以(均均值值2.58标标准准差差)(包包含含总总体体中中99%的的个个体体)确确定定第第一一组组上上限限: 3.73-2.580.64=2.082. L1=组组距距=(均均值值+2.58标标准准差
56、差)-(均均值值-2.58标标准准差差)=22.58标标准准差差25=$G$2-2.58*$H$23.选选中中M2:M26,在在编编辑辑栏栏输输入入公公式式“=FREQUENCY(G3:G1002,L2:L26)”Ctrl+Shift+Enter,获获得得频频数数4.绘绘制制直直方方图图:选选中中M2:M26图图表表向向导导图图表表下下一一步步系系列列分分类类(X)轴轴标标志志:选选中中L2:L26下下一一步步分分类类(X)轴轴:均均值值;数数值值(Y)轴轴:频频数数完完成成=NORMINV(x, ,=NORMINV(RAND(),)362.7523 3.5197 3.4580 4.2026
57、4.05813.59820.5741374.8858 3.0084 4.4220 3.8133 2.91423.80870.8627384.4639 4.2109 3.2800 3.5472 3.44893.79020.5164394.0690 3.0523 4.3596 3.2881 4.05523.76480.5625402.6515 3.5360 3.5240 4.0150 3.78023.50130.5161412.0238 2.8395 3.0091 3.3552 3.86763.01900.6812423.2812 2.6638 4.1990 3.2654 3.56503.3949
58、0.5567433.6743 3.1190 3.5777 3.8416 4.05933.65440.3507443.7720 3.8273 2.7698 3.8849 3.15983.48280.4941453.8573 3.1153 4.4790 3.6195 3.64613.74340.4933463.7715 4.0222 3.8177 4.6240 3.28933.90490.4835474.1362 3.5267 3.2424 2.8813 2.60793.27890.5929482.0494 4.1895 3.3527 3.2189 3.72893.30790.7981493.99
59、21 4.2270 5.0492 4.5917 3.36494.24500.6336503.0915 2.6410 4.3516 3.1113 2.64153.16740.7009514.3861 3.2905 4.1180 3.3960 4.96804.03170.7006523.5808 3.7715 2.8230 5.0345 3.57033.75600.8016534.5704 3.5879 3.9499 4.2344 3.61283.99110.4189543.5016 3.3511 3.1053 3.2310 4.60293.55840.6020553.8062 4.1343 2.
60、7441 3.8475 4.10443.72730.5690563.8891 3.3094 4.2376 3.7706 3.74593.79050.3330573.3926 3.3341 3.3022 2.9220 4.06033.40220.4118583.1577 3.8463 4.4332 3.5981 4.80813.96870.6577593.0321 4.2441 3.6301 4.0003 2.59693.50070.6811603.8374 4.3931 4.3859 2.3891 4.48243.89760.8811613.7281 3.8419 4.1314 2.6446
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年合作试多重宇宙机构联合试多重宇宙协议
- 2026年公号合作协议
- 四川西南航空职业学院《分布式数据库原理及应用》2024-2025学年第一学期期末试卷
- 西藏省重点中学2025年高二上生物期末考试模拟试题含解析
- 大动脉炎血管狭窄个案护理
- 石家庄市第八十一中学2025年高一上物理期末调研模拟试题含解析
- 浙江省杭州市长征中学2026届高二上物理期末教学质量检测试题含解析
- 咸阳师范学院《动物解剖学》2024-2025学年第一学期期末试卷
- 肾轻链沉积病的护理
- 地中海贫血输血护理的规范化操作
- 英语说题-2025高考全国一卷语法填空课件-高三英语上学期一轮复习专项
- 2025年初级西式面点师(五级)资格理论考试题库(含答案)
- 2025年应届生管培生入职合同协议
- 深度学习技术在自然语言处理领域的实践研究
- 《交通运输工程专业中级工程师》2022年职称考试试卷附答案
- 厦门食品安全员考试题库及答案解析
- 2025年安全员B证考试试题(必刷)附答案详解
- 中学生网络安全课件下载
- 转让煤气铺合同协议书
- 耳鸣耳聋患者的护理
- 2025及未来5年宠物泪痕清洁剂项目投资价值分析报告
评论
0/150
提交评论