




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.关于二面角的平面角定位分析 王璐【】空间角是立体几何中一个重要概念,它是空间图形的一个突出的量化指标,是空间图形位置关系的详细表达。解决立体几何问题的关键在于“三定:定性分析定位作图定量计算,其中定性是定位、定量的根底,而定量那么是定位、定性的深化。在面面关系中,二面角是其中的重要概念之一,它的度量归结为平面上角的度量,一般来说,对其平面角的定位是问题解决的先决一步,故对二面角的平面角的定位是关键。【】平面角;定性分析;定位作图;定量计算;点;垂线段;垂平面PositioningAnalysisonthedihedralangleof【Abstract】Three-dimensionalge
2、ometryofspaceangleisanimportantconcept,whichisaprominentspacegraphicsquantitativeindicators,therelationshipbetweenspatiallocationofaconcreteembodimentofgraphics.Three-dimensionalgeometrytosolvetheproblemliesin"determiningthreethings":aqualitativeanalysislocationmappingquantitativecalculati
3、on,whichisthelocationofqualitativeandquantitativebasisandisthelocationofquantitative,qualitativeindepth.Inallthingsrelationship,thedihedralangleisoneoftheimportantconceptsinone,itcomesdowntoflattopcornerofthemetricmeasurement,ingeneral,theirplaneanglepositioningisaprerequisitestepinproblem-solving,s
4、opairsofdihedralangleTheplaneanglepositioningisthekey.【Keywords】Planeangle;Qualitativeanalysis;Locationmapping;Quantitativecalculation;Point;Verticalsection;Verticalplane1二面角的平面角的特征、是由出发的两个半平面,O是l上任意一点,OC,且OCl;CD,且ODl。这就是二面角的平面角的环境背景,即COD是二面角-l-的平面角。它有如以下特征:过棱上任意一点,其平面角是唯一的;其平面角所在平面与其两个半平面均垂直;另外,假设在
5、OC上任取上一点A,作ABOD于B,那么由特征知AB.通过l、OA、OB、AB,之间的关系,便得到另一特征;:表达出三垂线定理或逆定理的环境背景。2二面角的平面角的特征剖析由于二面角的平面角是由一点和两条射线构成,所以二面角的平面角的定位可化归为“定点或“定线面的问题。特征说明:其平面角的定位可先在棱上取一“点,但这点必须与问题背景互相沟通,给计算提供方便。特征指出:假如二面角-l-的棱l垂直某一平面与、的交线,那么交线所成的角即为-l-的平面角,:由此可见,二面角的平面角的定位可以考虑找“垂平面。特征显示:假如二面角-l-的两个半平面之一,存在垂线段AB,由作OBl于,连OA,由三垂线定理可
6、知OAl;或由作OAl于,连OB。由三垂线逆定理可知OBl。此时,AOB即为二面角-l-的平面角。由此可见,二面角的平面角的定位可以找“垂线段以上三个特征提供的思路在解决详细问题时各具特色,其目的是分别找“点、“垂面、“垂线段。事实上,我们只要找到其中一个,另两个就接踵而至掌握这种关系对进步解题技能和培养空间想象力非常重要。3二面角的平面角的定位分析例1:是矩形ABCD边CD的中点,且,CD=,BC=,现沿AE将DAE折起至DAE,使得D到B、C两点的间隔 相等,求二面角D-BC-A的大小。解析:取AE中点P,BC中点Q那么可得PQBC,又由DB=DC,得DQBC,DQP是二面角D-BC-A的
7、平面角。经计算得:DQP23找“点,由定义确定二面角的平面角。例:矩形ABCD,AB=3,BC=4,沿对角线AC把ABC折起,使点B在平面ADC内的射影B恰好落在AD上,求二面角B-AC-D的大小。解析:这是一道由平面图形折叠成立体图形的问题,解决问题的关键在于搞清折叠前后“变与“不变。在平面图形中过作BEAC交AC于O、交AD于E,那么折叠后OB、OE与AC的垂直关系不变但OB与OE此时变成相交两线段并确定一平面,此平面必与棱AC垂直。由特征知,面BOE与面BAC、面DAC的交线OB与OE所成的角BOE,即为所求二面角的平面角。另外,点B在面DAC上的射影必在OE所在的直线上,又题设射影落在
8、AD上,所以E点就是B点,这样的定位给下面的定量提供了便捷条件。经计算:OB=AB·BCAC=3×45=125,AO=AB2AC=95,OE=AO·CDAD=2720,在RtBEO中,设BOE,那么cos=OEOB=916,0°180°,=arccos916,即所求二面角B-AC-D为arccos916,通过对例2的定性分析、定位作图和定量计算,由特征从另一角度告诉我们:要确定二面角的平面角,可以把构成二面角的两个半平面“摆平,依题目条件,在棱上选取一适当的垂线段,即可确定其平面角。“平面图形与“立体图形相呼映,不仅便于定性、定位,更利于定量。
9、由“垂线段定位二面角的平面角。例3:二面角-a-为,PA于A,PB于B,且PAcm,PB10cm求点到a的间隔 。解析:过PA、PB作平面,分别与、交于AO、BO,由PA,a?,知PAa,又由PB,a?,知PBa,因此,a平面,AO?,BO?,aAO,aBO,AOB为二面角-a-的平面角,即AOB120°,连PO,由PO?,得aPOPO的长为P点到a的间隔 。经计算:AO43cm,POPA2+AO2=82+432=47cm由棱的“垂面定位二面角的平面角。例:在正方体ABCD-ABCD中,棱长为2,E为BC的中点求面BDE与面BBCC所成的二面角的大小。解析:面BDE与面BBCC构成两
10、个二面角,由特征知,这两个二面角的大小必定互补通过特征,我们只须由C或D作BE的垂线交BE于H,然后连结HD或HC,即得面BDE与面BBCC所成二面角的平面角CHD三垂线定理。经计算可得:C455,在RtDC中,=DCHC=52,故所求的二面角角为arctan52或-arctan52二面角的三个特征,虽然客观存在,互相联络,但在许多问题中却很难通过直观图反映出来,这就需要我们培养良好的空间思维想象才能,正确定位。例:在正方体ABCD-A1B1C1D1中,是CC1的中点,求截面AD1E与底面ABCD所成角的正切值。解析:图中截面AD1E与底面ABCD只给出一个公共点,没有直接反映出二面角的棱,因
11、此还需找出它与底面的另一个公共点通过补形作出棱,进而再求二面角的大小。延长DC、D1E交于F,连AF,得截面AD1E与底面ABCD相交所得棱AF,AF交BC于G,过C作CHAF于H,连EH,EC面ABCD,CHAF,EHAF三垂线定理EHC即为所求截面AD1E与底面ABCD所成二面角的平面角可设正方体棱长为a,经计算得:ECCGa2,CFa,GF52a,CH,55atanEHCECCH=52,即所求二面角的正切值为52另:D1F在底面ABCD的射影是DA,SDFA=12DF×DA=a2,又D1A2,SD1FA=12D1A×322a=32a2,由射影面积法,所求角记为的余弦值
12、为cos=SDFASD1FA=23,那么所求二面角的正切值为52。另:还可用向量法求二面角的平面角。家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗读儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读才能进步很快。定位是为了定量,二面角的计算是通过其平面角所在的三角形计算而得而作平面角也是由其根本定义出发,在棱上找一点,在半平面内找一点,或在二面角内找一点,从这点出发作棱的垂线或垂面而得。假如二面角的棱在图中没有出现,可采取补形等方法作出二面角的
13、棱。唐宋或更早之前,针对“经学“律学“算学和“书学各科目,其相应传授者称为“博士,这与当今“博士含义已经相去甚远。而对那些特别讲授“武事或讲解“经籍者,又称“讲师。“教授和“助教均原为学官称谓。前者始于宋,乃“宗学“律学“医学“武学等科目的讲授者;而后者那么于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教在古代不仅要作入流的学问,其教书育人的职责也十清楚晰。唐代国子学、太学等所设之“助教一席,也是当朝打眼的学官。至明清两代,只设国子监国子学一科的“助教,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士“讲师,还是“教授“助教,其今日老师应具有的根本概念都具有了。单靠“死记还不行,还得“活用,姑且称之为“先死后活吧。让学生把一周看到或听到的新颖事记下来,摒弃那
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 实验设备租赁合同
- 透明彩钢瓦采购合同协议
- 软包定制工程合同协议
- 连锁酒店经营合同协议
- 买方土地居间合同协议合同书
- 法律知识产权法试题集
- 路基路面检测合同协议
- 道具修缮费合同协议
- 邯郸拆迁协议书范本
- 日剧恋爱协议书
- 《埃菲尔铁塔》课件
- 形象设计概论试题及答案
- (三模)南通市2025届高三第三次调研测试英语试卷(含答案解析)
- 红细胞生成素靶向治疗策略-全面剖析
- 2025年留置辅警笔试真题及答案
- 不同来源硫酸软骨素的化学结构、抗氧化与降脂活性对比
- 小学政治 (道德与法治)人教部编版二年级下册14 学习有方法教学设计
- 广东省2024-2025学年佛山市普通高中教学质量检测英语试卷及答案(二)高三试卷(佛山二模)
- 高端定制店面管理制度
- 2025年上半年广州市海珠区海幢街道招考康园工疗站工作人员易考易错模拟试题(共500题)试卷后附参考答案
- 预设理论在人工智能中的应用-深度研究
评论
0/150
提交评论