直流电动机电枢串联电阻调速过程设计_第1页
直流电动机电枢串联电阻调速过程设计_第2页
直流电动机电枢串联电阻调速过程设计_第3页
直流电动机电枢串联电阻调速过程设计_第4页
直流电动机电枢串联电阻调速过程设计_第5页
免费预览已结束,剩余18页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、指导教师评定成绩:审定成绩:湖南交通工程学院课程设计报告设计题目:直流电机的串电阻调速过程设计院系:电气与信息工程系学生姓名:张蕴专业:电气工程及其自动化班级:14级电气工程及其自动化(1)班学号:144139240471指导教师:陈海义设计时间:2017 年 11 月课程设计任务书一、设计题目直流电机的串电阻调速过程设计二、设计任务和要求1. 熟练直流电机的机械特性和电气特性;2. 根据图片提示,综合运用知识分析直流电机的运行过程;3. 计算每个阶段变化过程中的阻值对系统的影响;4. 推导出每个速度变化过程中电阻值的公式;5. 根据以下直流电动机特性Pn=85KWUan=380VIan=17

2、6ANn=1450r/min欲用电枢串电阻启动,启动级数初步为3 级1)选择启动电流11,切换电流I2和切换电流I32)求生起切电流比3)求生启动时电枢电路的总电阻 Ram4)求生启动级数m5)重新计算,校验12,136)求生各级总电阻7)求生各级启动电阻8)结论9)提交整个设计报告和测试报告目录一、直流电动机的综述4二、他励直流电动机5三、设计内容42四、结论1-4五、心得体会16六、参考文献17综述直流电动机因其良好的调速性能而在电力拖动中得到广泛应用。直流电动机按励磁方式分为永磁、他励和自励3类,其中 自励又分为弁励、串励和复励 3种。直流电动机-特点:(一)调速性能好。所谓“调速性能”

3、,是指电动机在一定负载 的条件下,根据需要,人为地改变电动机的转速。直流电动机可 以在重负载条件下,实现均匀、平滑的无级调速,而且调速范围 较宽。(二)起动力矩大。可以均匀而经济地实现转速调节。因此, 凡是在重负载下起动或要求均匀调节转速的机械,例如大型可逆轧钢机、卷扬机、电力机车、电车等,都用直流电动机拖动。直流电动机-工作原理:(a)导体ab处于N极下(M导体封处于巾横卜如上图(a)所示,则有直流电流从电刷A流入,经过线圈abcd ,从电刷B流出,根据电磁力定律,载流导体ab和cd 收到电磁力的作用,其方向可由左手定则判定, 两段导体受到的 力形成了一个转矩,使得转子逆时针转动。如果转子转

4、到如上图(b)所示的位置,电刷A和换向片2接触,电刷B和换向片1 接触, 直流电流从电刷A 流入, 在线圈中的流动方向是dcba , 从电刷 B 流出。此时载流导体ab 和 cd 受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。这就是直流电动机的工作原理。外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。实用中的直流电动机转子上的绕组也不是由一个线圈构成,同样是由多个线圈连接而成,以减少电动机电磁转矩的波动,绕组形式同发电机。二、他励直流电动机他励直流电动机由励磁绕组和电枢绕组分别由两个独立的直流电源供电。在

5、励磁电压Uf的作用下,励磁绕组中通过励磁电流If,从而产生主磁极磁通在电枢电压 Ua的作用下,电枢绕组中通过电枢电流 Ia。 电枢电流与磁场相互作用产生机械以某一转速n 运转。 电枢旋转时,切割磁感线产生电动势E.电动势的方向与电枢电流的方向相反。2.1 他励直流电动机机械特性2.1.1 他励直流电动机固有特性图2-1他励直流电动机固有特性特性(Un<U i)2.2 他励直流电动机的起动2.2.1 降低电枢电压起动这种方法需要有一个可改变电压的直流电源专供电枢电路之用。例如利用直流发电机、晶闸管可控整流电源或直流斩波电源等。 起动时,加上励磁电压Uf,保持励磁电流If为额定值不变,电枢电

6、压 Ua 从零逐渐升高到额定值。这种起动方法的优点是起动平稳,起动过程中能量损耗小,易于 实现自动化。缺点是初期投资大。2.2.2 增加电枢电阻起动在实际中,如果能够做到适当选用各级起动电阻,那么串电阻起动由于其起动设备简单、经济和可靠,同时可以做到平滑快速起动, 因而得到广泛应用。但对于不同类型和规格的直流电动机, 对起动电 阻的级数要求也不尽相同。下面以直流他励电动机电枢回路串联电阻二级起动为例说明起动过程。(1)启动过程分析如图4(a)所示,当电动机已有磁场时,给电枢电路加电源电压 U。触 点KM1、KM2均断开,电枢串入了全部附加电阻 Rki+Rk2,电枢回路 总电阻为Ral = ra

7、 + RK1 +RK2。这是启动电流为, UU11=Rai ra RK1 RK2与起动电流所对应的起动转矩为T1。对应于由电阻所确定的人为机械特性如图 4(b)中的曲线1所示。(a)电路图(b)特性图图4直流他励电动机分二级起动的电路和特性根据电力拖动系统的基本运动方程式T-Tl=J ddt式中 T电动机的电磁转矩;Tl由负载作用所产生的阻转矩;Jd- 电动机转矩克服负载转矩后所产生的动态转矩。 dt由于起动转矩Ti大于负载转矩Tl,电动机受到加速转矩的作用, 转速由零逐渐上升,电动机开始起动。 在图4(b)上,由a点沿曲线1 上升,反电动势亦随之上升,电枢电流下降,电动机的转矩亦随之下 降,

8、加速转矩减小。上升到b点时,为保证一定的加速转矩,控制触 点KM1闭合,切除一段起动电阻 Rki。b点所对应的电枢电流I2称 为切换电流,其对应的电动机的转矩 T2称为切换转矩。切除Rki后, 电枢回路总电阻为Ra2 = ra+RK2。这时电动机对应于由电阻 Ra2所确定 的人为机械特性,见图4(b)中曲线2。在切除起动电阻Rki的瞬间, 由于惯性电动机的转速不变,仍为 nb,其反电动势亦不变。因此, 电枢电流突增,其相应的电动机转矩也突增。适当地选择所切除的电 阻值Rki,使切除Rki后的电枢电流刚好等于Ii,所对应的转矩为T2, 即在曲线2上的c点。又有Ti>T2,电动机在加速转矩作

9、用下,由c 点沿曲线2上升到d点。控制点KM2闭合,又切除一切起动电阻 Rk2。同理,由d点过度到e点,而且e点正好在固有机械特性上。电枢电流又由I2突增到Ii,相应的电动机转矩由T2突增到。 Tl, 沿固有特性加速到g点T=TL,n=n g电动机稳定运行,起动过程结束。在分级起动过程中,各级的最大电流Ii(或相应的最大转矩T2)及 切换电流12(或与之相应的切换转矩T2)都是不变的,这样,使得起动 过程有较均匀的加速。要满足以上电枢回路串接电阻分级起动的要求,前提是选择合适的各级起动电阻。下面讨论应该如何计算起动电阻。(2)起动电阻的计算在图4(b)中,对a点,有 UIi=Rai即Rai =

10、Ii当从曲线1(对应于电枢电路总电阻 Ra1=ra+ RK1 +RK2)转换得到 曲线2(对应于总电阻Ra2 = ra + RK2)时,亦即从点转换到点时,由于切 除电阻Rki进行很快,如忽略电感的影响,可假定 nb=nc,即电动势 Eb=Ec,这样在点有12 =U UbRai在c点,U UcIi=Ra2两式相除,考虑到Eb=Ec,得Ii Rai同样,当从d点转换到e点时,得Il Ra2 =一 I 2 a这样,如图4所示的二级起动时,得U Rai _ Ra2 I 2 Ra2 ra推广到m级起动的一般情况,得I 1 Rai Ra2Ra(m 1)Ram=一=-=一I 2 Ra 2r aRama式中

11、 为最大起动电流1l与切换电流I2之比,称为起动电流比(或起 动转矩比),它等于相邻两级电枢回路总电阻之比。由此可以推出Rai式中m为起动级数。由上式得如给定 ,求m,可将式R1 = m取对数得m=ig由式=U 包=弛=.=典口=旦可得每级电枢回路总电阻 I 2Ra2raRamaRai =Ra2 ='aFaRa2 =Ra3 =m 1Ra(m-1) =Ram =aRam = ra各级启动电阻为RK1=Ra1-Ra2RK2 = Ra2-Ra3RK3 = Ra3-Ra4RK(m-1) =R a(m-1) -RamRKm =R am -a起动最大电流1l及切换电流I2按生产机械的工艺要求确定,

12、一般Ii=(1.52.0)I nl2 = (1.11.2)I N及电动机相应的转矩Ti=(1.52.0)I nT2=(1.11.2)I n(3)计算分级启动电阻,有两种情况:1、启动级数m未定,初选 Ram= ma-求m,取成整数m T计 算 值一计算各级电阻或分断电阻。2、启动级数m已定,选定Ii-Rm= U-计算 值-计算各级电阻或分II级电阻三、设计内容1)选择启动电流Il和切换电流I2Ii=(1.5 2.0)IaN=(1.5 2.0)X497 =(745.5 994)AI2=(1.5 1.2)IaN=(1.1 1.2) X497 =(546.7 596.4)选择 Ii=840, 12=

13、560。2)求出起切电流比11=1.5I 23)求出启动时电枢电路的总电阻RamRam= UN =0.524 Ii(4)求出启动级数mRamlg -m= ra =4.76lg取m=55)重新计算,校验I2=m Ram =1.47I2= "=571I2在规定范围之内。6)求出各级总电阻R5= 5ra=1.47 5 0.076 =0.52R4= 4ra =1.47 4 0.076 =0.35R3= 3ra=1.47 3 0.076 =0.24R2= 2ra=1.47 2 0.076 =0.16R1= ra=1.47 0.076 =0.11R0=Ra=0.0767)求出各级启动电阻Rst1

14、 =R1-R0=(0.11-0.076)=0.034Rst2=R2-R1=(0.16-0.11)=0.05Rst3=R3-R2=(0.24-0.16)=0.08Rst4=R4-R3=(0.35-0.24)=0.11Rst5=R5-R4=(0.52-0.35)=0.27四、结论1) 额定功率较小的电动机可采用在电枢电路内串起动变阻器的方法起动。起动前先把起动变阻器调到最大值,加上励磁电压Uf, 保持励磁电流为额定值不变。在接通电枢电源,电动机开始起动。随着转速的升高,逐渐减小起动变阻器的电阻,直到全部切除。额定功率比较大的电动机一般采用分级方法以保证起动过程中既有比较大的起动转矩,又使起动电流不

15、会超过允许值。2) 他励直流电动机串电阻启动计算方法选择启动电流I1 和切换电流I2启动电流为I1=(1.52.0)I n对应的启动转矩Ti=(1.52.0)I n切换电流为I2 = (1.11.2)I N对应的启动转矩T2=(1.11.2)I N求出起切电流(转矩)比_ I1 =I 2求出电动机的电枢电路电阻ra.PnUaNIaNra=一I aN求出启动时的电枢总电阻 RmUNRam =11求出启动级数mRamm=lglg 一 ra重新计算,校验I2是否在规定范围内若m是取相近整数,则需重新计算I2mRam再根据得出的 重新求出I2,并校验I2是否在规定范 . ra围内。若不在规定范围内,需

16、加大启动级数m重新计算 和I2, 直到符合要求为止。求出各级总电阻Ra1Ra2m raRa2Ra3m 1raRamra求出各级启动电阻五、心得体会说实话,课程设计真的有点累然而,当我一着手清理自己的设计成果,回味这1 周的心路历程,一种少有的成功喜悦即刻使倦意顿消虽然这是我刚学会走完的第一步,也是人生的一点小小的胜利,然而它令我感到自己的很多不足。通过课程设计,使我深刻的感受到,干任何事都必须耐心细致,课程设计过程中,有些计算就是因为自己的不细致算错了好几次只得重算,我终于感受到了科学的严谨性,我不禁时刻提醒自己,一定要养成一种高度负责,认真对待的良好习惯这次课程设计使我在工作作风上得到了一次难得的磨练短短一周的课程设计,使我发现了自己所掌握的知识是真正如此的缺乏,自己综合应用所学的专业知识能力是如此的不足,几年来的学习了那么多的课程,今天才知道自己并不会用在做课程设计过程中我要感谢程安宇老师,由于我们学 的电机与拖动知识并不多,有很多地方我们都不懂,程老师 在百忙之余抽出时间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论