徐芝纶编弹性力学简明教程第四版全部章节课后答案详解_第1页
徐芝纶编弹性力学简明教程第四版全部章节课后答案详解_第2页
徐芝纶编弹性力学简明教程第四版全部章节课后答案详解_第3页
徐芝纶编弹性力学简明教程第四版全部章节课后答案详解_第4页
徐芝纶编弹性力学简明教程第四版全部章节课后答案详解_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论1-1试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定:非均匀的各 向异性体,就是不满足均匀性假定,但满足各向同性假定。【解答】均匀的各项异形体如:竹材,木材。非均匀的各向同性体如:混凝土。1-2 一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体? 一般的岩质地基和 土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性, 各向同性假定。【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和

2、岩质地基不可以作为理想弹性体。1-3五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体枳都被组成这 个物体的介质所填满,不留下任何空隙。引用这一假定后,物体的应力、形变和位移等物理 量就可以看成是连续的。因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示 他们的变化规律。完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全 恢匆原型而无任何形变。这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者 之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为 线性的方程,其

3、弹性常数不随应力或形变的大小而变。均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整 个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的, 因而物体的弹性常数不随位置坐标而变化。各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此 假定后,物体的弹性常数不随方向而变。小变形假定:假定位移和变形是微小的。亦即,假定物体受力以后整个物体所有各点的 位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。这样在建立物体变形以后的 平衡方程时,就可以方便的用变形以前的尺寸来代替变形以后的尺寸。在考察物体的位移与 形变的关系时

4、,它们的二次累或乘积相对于其本身都可以略去不计,使得弹性力学中的微分方程都简化为线性的微分方程。1-41应力和面力的符号规定有什么区别?试画出正坐标面和负坐标面上的正的应力 和正的面力的方向。【解答】应力的符号规定是:当作用面的外法线方向指向坐标轴方向时(即正面时), 这个面上的应力(不论是正应力还是切应力)以沿坐标轴的正方向为正,沿坐标轴的负方向 为负。当作用面的外法线指向坐标轴的负方向时(即负面时),该面上的应力以沿坐标轴的 负方向为正,沿坐标轴的正方向为负。面力的符号规定是:当面力的指向沿坐标轴的正方向时为正,沿坐标轴的负方向为负。由下图可以看出,正面上应力分量与面力分量同号,负面上应力

5、分量与面力分量符号相 反。XV,.I负面正面% 7% X负面正的面力正的应力1-5试比较弹性力学和材料力学中关于切应力的符号规定。【解答】材料力学中规定切应力符号以使研究对象顺时针转动的切应力为正,反之为负。弹性力学中规定,作用于正坐标面上的切应力以沿坐标轴的正方向为正,作用于负坐标 面上的切应力以沿坐标轴负方向为正,反之为负。1-6试举例说明正的应力对应于正的形变。【解答】正的应力包括正的正应力与正的切应力,正的形变包 括正的正应变与正的切应变,本题应从两方面解答。正的正应力对应于正的正应变:轴向拉伸情况下,产生轴向拉 应力为正的应力,引起轴向伸长变形,为正的应变。正的切应力对应于正的切应变

6、:在如图所示应力状态情况下, 切应力均为正的切应力,引起直角减小,故为正的切应变。1-7试画出图中矩形薄板的正的体力、面力和应力的方向。【解答】正的体力、面力1-8试画出图1-5中三角形薄板的正的面力和体力的方向。【解答】1-9在图1-3的六面体上,y面上切应力的合力与z面上切应力.的合力是否相 等?【解答】切应力为单位面上的力,量纲为匚】加77,单位为因此,应力的合力应乘以相应的面积,设六面体微元尺寸如dxxdyxda则V面上切应力心的合力为:ryz dx dz(a)z面上切应力r.v的合力为:1也心(b)由式(a) (b)可见,两个切应力的合力并不相等。【分析】作用在两个相互垂直面上并垂直

7、于该两面交线的切应力的合力不相等,但对某 点的合力矩相等,才导出切应力互等性。第二章平面问题的基本理论2-1试分析说明,在不受任何面力作用的空间体表面附近的薄层中(图2-14)其应力状态接近 于平面应力的情况。【解答】在不受任何面力作用的空间表面附近的薄层中,可以认为在该 薄层的上下表面都无面力,且在薄层内所有各点都有q =%二=%二=0,只存在平面应力分量b、.,7“,且它们不沿z方向变化,仅为x, y的函数。可以认为此问题是平面应力问题。【2-2】试分析说明,在板面上处处受法向约束且不受切向面力作用的等厚度薄片中(2-15),当 板边上只受打y向的面力或约束,且不沿厚度变化时,其应变状态接

8、近于平面应变的情况。【解答】板上处处受法向约束时名=0 ,且不受切向面力作用,则/ /4 =&二°(相应%=%=°)板边上只受X,),向的面力或约束,所以仅存/ 在4,4/口,且不沿厚度变化,仅为X,y的函数,故其应变状态接近于平面彳 应变的情况。Z2-3在图2-3的微分体中,若将对形心的力矩平很条 件ZMc = 0改为对角点的力矩平衡条件,试问将导出什么形 式的方程?解答】将对形心的力矩平衡条件ZMc = 0,改为分别 对四个角点A、B、D、E的平衡条件,为计算方便,在z方 向的尺寸取为单位1。71dx /f dy /x f ff dy(a)dedx-(%+言办加

9、万+(%+dy)dx 1 力 + fxdxdy 1 处一 fxdxdy -1 = 0 22adx 1 + (ctv + dx)dy -(rxy + dx)dy Adx-a.dy !- 2 3x2 3x2(% + 乡 dx)dy/ + (% + ? dy)dx-dy + (% + * dy)dx-1-&2分2-rxydy I dx-(yxdy 1 虫一adx+ fxdxdy1也 + f、,dxdy-1- -= 0 2222lb、dxdv(crv + -dy)dxA' - - Txydy -l-dx+cydy 1 + ryxdx-l- dydy2211ay / d(ydy r t

10、dy r . . . dx A(y dx A (b +-dx)dydxdy - 1 + j dxdy-l = 02 x dx 2 A 22z%=°Godxdydx一(5力)心1一+0办1二+ T、/xl办+ (7VdXl一一dy222(d) dvdxdx)dy - 1 - dx- fxdxdy - 1 + fydxdy '1- = ()22de dy伍+除因力/万一(+*略去(a)、(b)、(c)、(d)中的三阶小量(亦即令d'dy,dxdb都趋于0),并将各式都除以公办后合并同类项,分别得到% 【分析】由本题可得出结论:微分体对任一点取力矩平衡得到的结果都是验证了切

11、应力互等定理。【22】在图2-3和微分体中,若考虑每一面上的应力分量不是均匀分布的,验证将导出什么形 式的平衡微分方程?【解答】微分单元体ABCD的边长dx,办都是微量,因此可以假设在各面上所受的应力如图a 所示,忽略了二阶以上的高阶微量,而看作是线性分布的,如图(b)所示。为计算方便,单元体在 z方向的尺寸取为一个单位。八XcXQ*血皿上山)vx(b)各点正应力:dea十寸9)=区;, 、 de .9) = 5 + 1办;dyde f9)=4+黄公/ 、啊7 啊A卬十工小寸;dedo(q)c = % + 公 + dxOv9r各点切应力:(Tyx)A = Tyx(%)A = Txy ;(%)8

12、 = Txy +(79)。=7今+ dx;dx6"+ dxdxdr dr9” = % + %”丫+.办or or(%”=%+姿小+多办由微分单元体的平衡条件EG = 0, 巩=0,得,斗+卜得制卜+骷+等叶值+*+箓可卜- (+卜+5H卜X+即* + ,)+, +等加%+侦加。or YU I dr ( dr dr H%+蕾硼加卜卜瞪卜卜蕾加肾可卜+小=。以上二式分别展开并约简,再分别除以公办,就得到平面问题中的平衡微分方程:也+空L +dx dyA = o;注+”dy*dx【分析】由本题可以得出结论:弹性力学中的平衡微分方程适用于任意的应力分布形式。(2-5在导出平面问题的三套基本方

13、程时,分别应用了哪些基本假定?这些方程的适用条件是 什么?【解答】(1)在导出平面问题的平衡微分方程和几何方程时应用的基本假设是:物体的连续性和 小变形假定,这两个条件同时也是这两套方程的适用条件。(2)在导出平面问题的物理方程时应用的基本假定是:连续性,完全弹性,均匀性和各向同性假 定,即理想弹性体假定。同样,理想弹性体的四个假定也是物理方程的使用条件。【思考题】平面问题的三套基本方程推导过程中都用到了哪个假定?(2-6在工地上技术人员发现,当直径和厚度相同的情况下,在自重作用下的钢圆环(接近平 面应力问题)总比钢圆筒(接近平面应变问题)的变形大。试根据相应的物理方程来解释这种现象。【解答】

14、体力相同情况下,两类平面问题的平衡微分方程完全相同,故所求的应力分量相同。由物理方程可以看出,两类平面问题的物理方程主要的区别在于方程中含弹性常数的系数。由于E 为GPa级别的量,而泊松比取值一般在(0, 0.5),故主要控制参数为含有弹性模量的系数项,比 较两类平面问题的系数项,不难看出平面应力问题的系数1/£要大于平面应变问题的系数(1-笛)/石。因此,平面应力问题情况下应变要大,故钢圆环变形大。2-7在常体力,全部为应力边界条件和单连体的条件下,对于不同材料的问题和两类平面问 题的应力分量巴.和%均相同。试问其余的应力,应变和位移是否相同?【解答】(1)应力分量:两类平面问题的

15、应力分量%和%均相同,但平面应力问题4 = J = %: = °,而平面应变问题的J = % = o,q = 4(q + q)。(2)应变分量:已知应力分量求应变分量需要应用物理方程,而两类平面问题的物理方程不相 同,故应变分量=八二=。/刈相同,而邑,与,殍不相同。(3)位移分量:由于位移分量要靠应变分量积分来求解,故位移分量对于两类平面问题也不同。9图216【2-8】在图2-16中,试导出无面力作用时AB边界上的a,a, 之间的关系式【解答】由题可得:/ = cos «,/« = cos(67-90 ) = sin afx(AB) = 0jy(AB) = 0将

16、以上条件代入公式(2-15),得:(?)" 。8 sm。= °,(4)" sin a + (%)" cos a 二。A SJs = -(0产 a = 9)/",a【2-9】试列出图2-17,图2-18所示问题的全部边界条件。在其端部小边界上,应用圣维南原 理列出三个枳分的应力边界条件。V/>),(hz»b)图 2-17图 2.18【分析】有约束的边界上可考虑采用位移边界条件,若为小边界也可写成圣维南原理的三个积 分形式,大边界上应精确满足公式(2-15)。【解答】图2-17:上(v=0)左。=0)右(.v=b)/0-11m-10

17、0工(s)0og(y+4)_pg(y+%)Pgh100代入公式(2-15)得在主要边界上x=0,上精确满足应力边界条件:(q)- = -pg(y+J,(%L = o;(%晨二一屐()'+九),(%). 二 °;在小边界y = 0上,能精确满足下列应力边界条件:()v=o=-(r-Lo = O在小边界y = h2上,能精确满足下列位移边界条件:()=。,3),=。 /=生 7 y=h这两个位移边界条件可以应用圣维南原理,改用三个积分的应力边界条件来代替,当板厚5=1 时,可求得固定端约束反力分别为:F, = 0, Fn = -pghb,M = 0由于y =久为正面,故应力分量与

18、面力分量同号,则有:二一夕刎<(巴)xdx = 0JO v '八=限 .(%) /公=°J 0 - / v=/u图2-18上下主要边界产4/2,产/1Z2上,应精确满足公式(2-15)lm74(s)hV = 一一0-10q2hy =-01-<7i02(b1V=如2 = 一(I 9 (rvA)y=./>/2 =。,(b».)尸及2 =。» (rvA)y=A/2 = 一4在X=0的小边界上,应用圣维南原理,列出三个积分的应力边界条件:负面上应力与面力符 号相反,有rh/2f/仍9)=0公=一心Ch/2J 小9)=0 必=-M在X二/的小边界上

19、,可应用位移边界条件I = 0,匕=/ = 0这两个位移边界条件也可改用三个积分的应力边界条件来代替。首先,求固定端约束反力,按面力正方向假设画反力,如图所示,列平衡方程求反力:阳£F =0、Fn + F;= qj n F: =qj-&£F、=0,Fs + F + ql = 0 = F = ql Fs工MA=O,M + M*FJ + Lq 尸一LqJh = 0 = M =-M-Fj d2222由于x=/为正面,应力分量与面力分量同号,故rh/2【心(巴)-心=4=,1,一人. £ 9Ji她="=哈-用-小号£(%)1外=尸S【2-10】

20、试应用圣维南原理,列出图2-19所示的两个问题中 OA边上的三个积分的应力边界条件,并比较两者的面力是否是是 静力等效?【解答】由于/,OA为小边界,故其上可用圣维南原理, 写出三个积分的应力边界条件:- x(a)上端面OA面上面力fx = 0,人=-qb由于OA面为负面,故应力主矢、主矩与面力主矢、主矩符 号相反,有小一17处=痣2=快, a :x (b t qb2xdx = - fvxdx = q x dx =2一Jo Jy)12 (对OA 中点取矩)dx=0(b )应用圣维南原理,负面上的应力主矢和主矩与面力主矢和主矩符号相反,面力主矢y向为正, 主矩为负,则dx = -Fv =- -J

21、o y /y=oa 2,£(%),»=_“ 金£(%)"=o综上所述,在小边界OA上,两个问题的三个枳分的应力边界条件相同,故这两个问题是静力 等效的。2-11检验平面问题中的位移分量是否为正确解答的条件是什么?【解答】(1)在区域内用位移表示的平衡微分方程式(2-18);(2)在上用位移表示的应力边界条件式(2-19);(3)在上的位移边界条件式(2-14);对于平面应变问题,需将E、作相应的变换。【分析】此问题同时也是按位移求解平面应力问题时,位移分量必须满足的条件。2-12检验平面问题中的应力分量是否为正确解答的条件是什么?【解答】(1)在区域A内

22、的平衡微分方程式(2-2);(2)在区域A内用应力表示的相容方程式(2-21)或(2-22);(3)在边界上的应力边界条件式(2-15),其中假设只求解全部为应力边界条件的问题:(4)对于多连体,还需满足位移单值条件。【分析】此问题同时也是按应力求解平面问题时,应力分量必须满足的条件。【补题】检验平面问题中的应变分量是否为正确解答的条件是什么?【解答】用应变表示的相容方程式(2-20)(2-13检验平面问题中的应力函数是否为正确解答的条件是什么?【解答】(D在区域A内用应力函数表示的相容方程式(2-25):(2)在边界S上的应力边界条件式(2-15),假设全部为应力边界条件;(3)若为多连体,

23、还需满足位移单值条件。【分析】此问题同时也是求解应力函数的条件。2-14检验下.列应力分量是否是图示问题的解答:图 2-20图 2-21(a)图 2-20, o =x b2【解答】在单连体中检验应力分量是否是图示问题的解答,必须满足:(1)平衡微分方程(2-2); (2)用应力表示的相容方程(2-21); (3)应力边界条件(2-15)。(1)将应力分量代入平衡微分方程式,且A = = 0d(yr dr八 do dr丁 +二一=0 = 0显然满足及3dx1(2)将应力分量代入用应力表示的相容方程式(2-21),有等式左=d2 d2dx+df% + %)=患工0=右篇-(取梁的厚度b=l),得出

24、所示问题的应力分量不满足相容方程。因此,该组应力分量不是图示问题的解答。(b)图2-21,由材料力学公式,q =-j-y, rvv解答:q=2q标 rvv = _222_(/72-4y2) o又根据平衡微分方程和边界条件得出:名二一2 二幺土。试导出上述公式,并检验解答的正确性。-2 lh h 2 /【解答】(1)推导公式在分布荷载作用下,梁发生弯曲形变,梁横截面是宽度为1,高为h的矩形,其对中性轴(Z轴)的惯性矩/ =眩,应用截面法可求出任意截面的弯矩方程和剪力方程 12M(x) = _x:F(x) = _blqx22/所以截面内任意点的正应力和切应力分别为:得:M (x) y = -2qX

25、)'lh3£32bhh2根据平衡微分方程第二式(体力不计)。浊+Jdy dxxy c 42qr+ A lh根据边界条件=0%号冷噜一犷将应力分量代入平衡微分方程(2-2) 第一式:左=-6q.Z/?3厂y /.+ y = 0=% 满足 lh第二式自然满足将应力分量代入相容方程(2-23) +全上+ b、.) = -12 端-120 Ao =右应力分量不满足相容方程。故,该分量组分量不是图示问题的解答。【2-15】试证明:在发生最大与最小切应力的面上,正应力的数值都等于两个主应力的平均值。【解答】(1)确定最大最小切应力发生位置任意斜面上的切应力为工”=/?(-5),用关系式尸

26、+利2 = 1消去m,得rn =一巧)=±4一 一/4(/ 一巧)=±1/4-(1/2-/2)2 (% -5)由上式可见当4一/2=0时,即/= ±上时,乙为最大或最小,为 亿)a=±=2。因此, 2V 2mm 2切应力的最大,最小值发生在与大轴及)、轴(即应力主向)成45°的斜面上。(2)求最大,最小切应力作用面上,正应力b“的值任一斜面上的正应力为%=产9一%)+4最大、最小切应力作用面上/ = ±JI7,带入上式,得b =_ %) + 4=:(q + b2 )证毕。2-16设已求得一点处的应力分量,试求= -400;(a)j =

27、 100,= 50,Txy = 10>/50; (Z?)crv = 200,crv = 0"(c)(7v =-2000,o; =1000/°, = -400; (d)o =-1000,(7V =-1500,rn = 500. JJJ-/【解答】由公式(2-6)力一巴.<J -巴+巴土2 一+ t2 及 tancn =得 cn 二 aictan%100 + 50±2r ioo-5o 丫+ (10V50)2 =150% = a3au安理=35。16,10V50200 + 0土2200-OY+ (-400)"=512-312519 700- aic

28、tan: = aictan(-0.78)= -37°57,-2QQQ + 1QQ0±r-2000 +1000 Y+ (-400)-=1052-20521052 + 2000/ 、a、= arctail=arctan (-7.38)= - 82°32,(d)-1000-1500±2( 1000 +1500 丫 v+ 300-=J-691 -1809691 + 1000.c cicda. = aictan= arctan 0.618 = 31 °4315002-17设有任意形状的等候厚度薄板,体力可以不计,在全部边 界上(包括孔口边界上)受有均匀压

29、力%试证% =Oy =-4及% = 0 能满足平衡微分方程、相容方程和应力边界条件,也能满足位移单值条 件,因而就是正确的解答。【解答】(1)将应力分量q = % =-<7,% = 0 ,和体力分量A = 4 =。分别带入平衡微分方程、相容方程dx啊"f A=+' = °(a)(b)u(q+%)=°显然满足(a) (b)(2)对于微小的三角板A, dx,力都为正值,斜边上的方向余弦/ = 85(”,工),7 = 85(,),将q =q =q% = 0 ,代入平面问题的应力边界条件的表达式(2-15 ),且fx = -qcosx)Jy=qcos(77,

30、 y),则有o; cos (az, x) = -q cos (, x), / cos (, y) = -q cos (, y)所以 =_q,by =_q。对于单连体,上述条件就是确定应力的全部条件。(3)对于多连体,应校核位移单值条件是否满足。该题为平面应力情况,首先,将应力分量代入物理方程(2-12),得形变分量,(一 一1)( 一 1)八6=广 qq =匕%=°将(d)式中形变分量代入几何方程(2-8),得(d)前两式枳分得到d> (z/-l)仇,du 八q, =q, + =0 E dx (e)=岑 qx + /;()#=岑 qy + f2 (x) EE(f)其中工(

31、9;),上(x)分别任意的待定函数,可以通过几何方程的第三式求出,将式(力代入式(e)的第三式,得dy dx等式左边只是),的函数,而等式右边只是x的函数。因此,只可能两边都等于同一个常数0, 于是有皿一,幽Jdydx积分后得(y) = 一纱+(x) = gx+% 代入式(f)得位移分量( T)u =Ey=(4 - DEqx-a)y + uQqy + cox + v0其中°,%,0为表示刚体位移量的常数,需由约束条件求得从式(g)可见,位移是坐标的单值连续函数,满足位移单值条件。因而,应力分量是正确的解 答。【2-18】设有矩形截面的悬臂梁,在自由端受有集中荷载F (图2-22),体

32、力可以不计。试根据 材料力学公式,写出弯应力 =°,然后证明这些表达式满足平衡微分方程和相容方程,再说明这 些表达式是否就表示正确的解答。 M(x)12尸弯成力 5 = - y = -r-xy ;L h该截面上的剪力为a(x)=尸,剪应力为6户仅21r1五=如应=-F .伫色3+*lx(/12)u J L 2取挤压应力bv = 0(2)将应力分量代入平衡微分方程检验K I、 / -12F12尸 八 十第一式:左=y + y = 0 =右 /rI f .第二式:左=0+0=0=右该应力分量满足平衡微分方程。(3)将应力分量代入应力表示的相容方程左=72(5+0;) = 0 =右 满足相

33、容方程 人F(4)考察边界条件在主要边界y = ±/2上,应精确满足应力边界条件(2-15)1m ; 工hy =上o-ioo2h ,y =一 上 oioo 2代入公式(2-15),得=。,(%)尸一心=。;(4%。,(%)=0在次要边界40上,列出三个积分的应力边界条件,代入应力分量主矢主矩-(区)厂0办=0 =加句面力主矢 J-h/2L J, 9)=0)由=o =面力主矩O)x=o办=(:J-笄4-力办=-F =响面力主矢J-h/2'J-h/2 h 4. 一满足应力边界条件在次要边界上,首先求出固定边面力约束反力,按正方向假设,即面力的主矢、停)W 主矩,Fn=0、Fs=-

34、F、M=-FI F§)其次,将应力分量代入应力主矢、主矩表达式,判断是否与面力主矢与主矩等效:a,?,、,严212尸f f八人=_匚2下岫=0 =&rh/2. ch/2 12尸.-> ._心(4)日 ydy = -_hily-dy = -Fl = Mk( %几的=y切力=Fs满足应力边界条件,因此,它们是该问题的正确解答。2-19试证明,如果体力虽然不是常量,但却是有势的力,即体力分量可以表示为av dv/v=-Jv = -,其中V是势函数,则应力分量亦可用应力函数表示成为 dx > dyd2(r>d?d?= f + V,b、= f + V,= 土上,试导出

35、相应的相容方程。dy-及一 ° dxdy【解答】(1)将。,4带入平衡微分方程(2-2)dade6t,.dVv ,阴.f _ o. 以-n'.1 / r UiVdx 济 xdx为dx' => dav 0Tl、dV+ f - 0y上-nt / . u1V6 dx 'Jdx(a)将(a)式变换为(b)为了满足式(b),可以取17 于 。二CT - V =* *V =.7 =dx2 " dxdy*17 夕及一OXOV1(2)对体力、应力分量力"名%求偏导数,得dfx _ d2V fy _ d2V 砥一一右dydf(c)。立一 夕 d2V d

36、2ax _ d4 d2V dxrdxdf'+dxr, "一声十讲 。»丫。d2V。匕、夕d2V= = dx2dx4dx2 "dy?dx2dy2dy?将(c)式代入公式(2.21)得平面应力情况下应力函数表示的相容方程京(q+a)=(i+)、- 7 dx dy )(2-21)。4 d2V 04 d2V 64 d2V O4 d2V 八 、理+获+可 + 评 + 右 + 右 + +溟 =(+")(d2v d2vdx2 dy2整理得:次 040,T + 2 ; HT- dx-丹= -(!-/)(d2V d2VI。厂输厂(d)即平面应力问题中的相容方程为V

37、4(D = -(1-/)V2V将(c)式代入公式(2-22)或将(d)式中的替换为2_,的平面应变情况下的相容方程:1一46,646d2V d2Vr + 2 、 、+ = - + -(e)dx 8-dy- dy 1一 (广令-)即 VS 一七必 l-A证毕。第三章平面问题的直角坐标解答3-1为什么在主要边界(大边界)上必须满足精确的应力边界条件式(2-15),而在 小边界上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代 替?如果在主要边界上用三个积分的应力边界条件代替式(2-15),将会发生什么问题?【解答】弹性力学问题属于数学物理方程中的边值问题,而要使边界条件完全

38、得到满足, 往往比较困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将 物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影 响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上 用三个枳分的应力边界条件来代替精确的应力边界条件(公式2-15),就会影响大部分区域 的应力分布,会使问题的解答精度不足。3-2如果在某一应力边界问题中,除了一个小边界条件,平衡微分方程和其它的应 力边界条件都已满足,试证:在最后的这个小边界上,三个积分的应力边界条件必然是自然 满足的,固而可以不必校核。【解答】区域内的每一微小单元均满足平

39、衡条件,应力边界条件实质上是边界上微分体 的平衡条件,即外力(面力)与内力(应力)的平衡条件。研究对象整体的外力是满足平衡 条件的,其它应力边界条件也都满足,那么在最后的这个次要边界上,三个积分的应力边界 条件是自然满足的,因而可以不必校核。3-3如果某一应力边界问题中有m个主要边界和n个小边界,试问在主要边界和小 边界上各应满足什么类型的应力边界条件,各有几个条件?【解答】在m个主要边界上,每个边界应有2个精确的应力边界条件,公式(2-15), 共2m个:在n个次要边界上,如果能满足精确应力边界条件,则有2n个;如果不能满足 公式(2-15)的精确应力边界条件,则可以用三个静力等效的积分边界

40、条件来代替2个精确 应力边界条件,共3n个。图383-4试考察应力函数=。)在图3-8所示的矩形板 和坐标系中能解决什么问题(体力不计)?【解答】相容条件:不论系数a取何值,应力函数=。总能满足应力函 数表示的相容方程,式(2-25).求应力分量当体力不计时,将应力函数代入公式(2-24),得b, = 6g,,b,=0,r-°考察边界条件上下边界上应力分量均为零,故上下边界上无面力.左右边界上;当a>0时,考察巴分布情况,注意到<).=0,故y向无面力左端:九(。)=0 = 60(0 < y<h) fy = (%)o = 0右端:(b,)E= 6ay (0&l

41、t;y< /?) %=(%)3 0应力分布如图所示,当/时应用圣维南原理可以将分布的面力,等效为主矢,主矩主矢的中心在矩下边界位置。即本题情况下,可解决各种偏心拉伸问题。偏心出巨e:因为在A点的应力为零。设板宽为b,集中 产吨荷载p的偏心距e:°)端一赢=°"6同理可知,当。<0时,可以解决偏心压缩问题。【解答】(1)由应力函数得应力分量表达式4=0, % = 2 ,% = % = -2ax(/o; +町.)=工(s) 考察边界条件,由公式(2-15) '",二("Qv+/%),. =4.($)主要边界,上边界),=一,上,

42、面力为Z(y = -1) = 7v(y = -1) = ah乙乙主要边界,下边界y = g,面力为Z(y = |)= -2=,£ (y = ;) = ah次要边界,左边界大二0上,面力的主矢,主矩为 rh/2,X 向主矢:F,=-J 9)=。办=°rh/2向主矢:、,=一1仃(几0方=。主矩:知=-。:(/)用力=0次要边界,右边界大二/上,面力的主矢,主矩为X 向主矢:F;=:(q)E 办=0),向主矢:F;=二(r,.),v=/ dy =二(-2al)dy = -2alh 主矩:M=。:(区)1必=0弹性体边界上面力分布及次要边界面上面力的主矢,主矩如图所示=bxy2将

43、应力函数代入公式(2-24),得应力分量表达式= 2bx , crv = 0 , r, = rvr = -2by考察应力边界条件,主要边界,由公式(2-15)得h-( h -( h在y=一!主要边界,上边界上,面力为7, y = - = bhjy y = - =022 J2 /在y = 下边界上,面力为1y = J =-/?/,4= y =0在次要边界上,分布面力可按(2-15)计算,面里的主矢、主矩可通过三个积分边界条件 求得:在左边界x=0,而力分布为X (x = 0) = 0Jy (x = 0) = 2by面力的主矢、主矩为hx向主矢:工=一G= 02),向主矢:K =_6('办

44、=_(-2mg力=022f/i/2主矩;M=_J 3)=0汕=0在右边界X=/上,面力分布为fK(x = l) = 2bl9fy(x = l) = -2by面力的主矢、主矩为x 向主矢:F: =dy = 2bldy = 2blhy 向主矢:FJ = J:(% dy = £(-2助办=0主矩:M,= J:(q)Qdy = J:2b/),dy = 0弹性体边界上的面力分布及在次要上面力的主矢和主矩如图所示(3)二户将应力函数代入公式(2-24),得应力分量表达式5 = 6竺,4 = 0, % = Tyx = -3cyr考察应力边界条件,在主要边界上应精确满足式(2-15)上边界y =-4

45、上,面力为2下边界尸2上,面力为次要边界上,分布面力可按(2-15)计算,面力的主矢、主矩可通过三个积分边界求得:左边界大二。上,面力分布为1(x=0)= 0,fv(x = 0)= 3cy2面力的主矢、主矩为x向主矢:工=一。:9)=。力=。响主矢:k=-£:(%)/),= -主矩:M =-:;(%)“办=0右边界工=/上,面力分布为7v(x = /) = 6cly,fy (% = /) = -3cy2面力的主矢、主矩为, 也2 /、.f/i/2x 向主矢工=J(crv)dy = J 6clydy = 0y向主矢:耳=J:。).公=£(-30,2)外=一那主矩:"

46、=仁(4 )i ydy = 6clydy = | c/?弹性体边界上的面力分布及在次要边界上面力的主矢和主矩,如图所示【解答】(1)将应力函数代入相容方程(2-25)显然满足(2)将代入式(2-24),得应力分量表达式J =r_,%.=o, txy = tyxlr(3)由边界形状及应力分量反推边界上的面力:在主要边界上(上下边界)上,y = ±,应精确满足应力边界条件式(2-15),应力 2(a)y=±A/2=05()v=±/r/2=0h- (h- (h因此,在主要边界y = ±上,无任何面力,即A" = ± =0,£. y

47、 = ± =02- V2) I2)在X二0, X=/的次要边界上,面力分别为:因此,各边界上的面力分布如图所示:x=l上r7?/2 , F.=Ljdy = o "=Cfa=-F Mh=:Jxydy = -Fl在xO, X=/的次要边界上,面力可写成主矢、主矩形式:x=O上,h F响主矢:%=匚/办=0,州主矢:鼻fy = F,o hf, 主矩:M=J""y = o,Jh/2因此,可以画出主要边界上的面力,和次要边界上而力的主矢与主矩,如图因此,该应力函数可解决悬臂梁在自由端受集中力F作用的问题。3-7试证=必二(4二+3;-1) +”(2二一;)能满足相

48、容方程,并考察它在 4/? h 10 h h图39图3-9所示矩形板和坐标系中能解决什么问题(设 矩形板的长度为/,深度为人 体力不计)。【解答】(1)将应力函数代入式(2-25)6, A 於 24qv京=°'歹='-6412分 -24仍,私词川 川代入(2-25),可知应力函数满足相容方程。(2)将代入公式(2-24),求应力分量表达式:6?, = fxx = 5V6? 6qx 斤,、% = % = 一9=一尸勺7)(3)考察边界条件,由应力分量及边界形状反推面力:在主要边界),=-;(上面),应精确满足应力边界条件(2-15) 工卜=- g)=- ( )尸-心=&

49、#176;。=-弁 -( )z 2=q 在主要边界y = (下面),也应该满足(2-15) 工(y = /? / 2) = (% )i,2 = 0,1 (y =力 / 2) = (%)=o 在次要边界x=o上,分布面力为/=0)=_9)=。=等一 爷,fv(x=o)= 一(%L = o应用圣维南原理,可写成三个积分的应力边界条件:在次要边界x =/上,分布面力为工(1)=9) 华+第一型 小,1/?3 5h应用圣维南原理,可写成三个积分的应力边界条件:卜电叱凰-/+誓聿1=。u=口(1)小,=£:岸(B2卜),="M'=f;J(x=/)M'=M(-窄+3上

50、等卜)'=疗综上,可画出主要边界上的面力分布和次要边界上面力的主矢与主矩,如图(a)因此,此应力函数能解决悬臂梁在上边界受向下均布荷载q的问题。【3-8】设有矩形截面的长竖柱,密度为p,在一边侧面上受均布剪力q。(图3-10),试求应力分量。TK H '【解答】采用半逆法求解。/J/由材料力学解答假设应力分量的函数形式。(1)假定应力分量的函数形式。根据材料力学,弯曲应力巴.主要与截面的弯矩有关,剪应力1.主要与图3.1。截面的剪力有关,而挤压应力b,主要与横向荷载有关,本题横向荷载为零,则=0(2)推求应力函数的形式将 =0,体力£ = 0/.=。且,代入公式(2-

51、24)有对y积分,得打,/W(a)(b)二才(力+力(力其中/(x),£(x)都是的待定函数。(3)由相容方程求解应力函数。将(b)式代入相容方程(2-25),得d4f(x) d4f. (x)y+=o©dx ax在区域内应力函数必须满足相容方程,(c)式为),的一次方程,相容方程要求它有无数 多个根(全竖柱内的),值都应满足它),可见其系数与自由项都必须为零,即"丫)(工)_。dx4 , dx两个方程要求(d)/(x) = Ar3 + Bx2 + CxJx) = Dx5 + Ex2中的常数项,/(x)中的常数项和一次项已被略去,因为这三项在的表达式中成为y的一次项

52、及常数项,不影响应力分量。将(d)式代入(b)式,得应力函数=y(Av3 + Bx2 + &)+(瓜3 + Ex2)(e)(4)由应力函数求应力分量%=力-7> = 0(f)(g)(h)在一0?,= -3>Ax-2Bx-Cdxdv9r(5)考察边界条件利用边界条件确定待定系数A、B、C、D、Eo 主要边界x = 0上(左):(b)=o=O,(%),1o=O将(f), (h)代入(巴).0 = °,自然满足9L=0,自然满足J)r = q ,将(h)式代入,得3)f=-3Ab2-2Bb-C = q(J)在次要边界y = 0上,应用圣维南原理,写出三个积分的应力边界条

53、件:,9、)v=0dx = J:(66+ 2E)dx = 3Db2 + 2Eb = 0£ (crv)v=0 xdx =,(6Dx + 2E)xdx = IDb + Eb2 = 0£ (rvJv=ot/x = j:(-3AF - 2Bx-Cyix = -Ab5 - Bb2 -Cb = 0 由式(i), (j), (k), (1), (m)联立求得人=-0,8 = ?, C = D=E = 0b- b代入公式(g), (h)得应力分量(m)% = 0,一讣加, =赳L一 2【3-9】图3-11所示的墙,高度为h,宽度为b, hb,在 两侧面上受到均布剪力q的作用,试应用应力函数 =Axy + Bx5y求解应力分量。【解答】按半逆解法求解。将应力函数代入相容方程(2-25)显然满足。图3/1由公式(2-24)求应力分量表达式,体力为零,有o; = = 0,= - = 6Bxy ,= TOv-= -A-3Bx2 Gxdy考察边界条件:在主要边界x =-"2上,精确满足公式(2-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论