预应力混凝土简支梁桥计算二11B_第1页
预应力混凝土简支梁桥计算二11B_第2页
预应力混凝土简支梁桥计算二11B_第3页
预应力混凝土简支梁桥计算二11B_第4页
预应力混凝土简支梁桥计算二11B_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 .b:计算抗扭修正系数:IT计算表 表1-4分块名称bi(cm)ti(cm)ti/biciTti= ci bi ti3(×103m4)翼缘板160180.11250.30932.88614腹板149.5200.13380.30493.64660马蹄5032.50.650.20903.7589310.29167注:系数ci是根据t/b值由玲森主编的桥梁工程表252查得。本设计主梁的间距一样,同时将主梁近似看成等截面,则得:式中:G=0.43E,L=34.00m,I=0.37947313m4,为与主梁片数n有关的系数,当n=5时,=1.042;B=8.5m;G=0.43E;=0.837

2、2;c:按修正的刚性横梁法计算横向影响线竖坐标值:N=5,a1=3.2m,a2=1.6m,a3=0m,a4=-1.6m,a5=-3.2m;则2=2×(3.22+1.62)=25.6m2;计算所得的ij值列表于15中:ij值 表1-5梁号e(m)i1i4i5i2i313.20.53490.0326-0.13410.36740.2 21.60.36740.11630.032560.28370.2300.20.20.20.20.2d:计算荷载横向分布系数:1,2,3号梁的横向影响线和最不利布载图示如图16,对1号梁,则:汽20:mcq=1/21j=1/2(0.5264+0.3306+0.1

3、891-0.0067)=0.5197;挂100:mcq=1/21j=1/4(0.4720+0.3741+0.2762+0.1782)=0.3251;人群荷载:mcr=0.6216;(2):支点的荷载横向分布系数m: 如图(1-7)所示,按杠杆原理法绘制荷载横向影响线并进行布载,1号梁活载的横向分布系数可按计算如下: 图16 跨中的横向分布系数mc计算图示汽20:moq=0.5×0.8750=0.4375;挂100:moq=0.25×0.5625=0.1406;人群荷载:mor=1.4219; 图17 支点的横向分布系数mo计算图示 (尺寸单位:m) (3):横向分布系数汇总

4、:表16;1号梁活荷载横向分布系数 表16荷载类别mcmo汽20 0.51970.4375挂1000.32510.1406人 群0.62161.42193:计算活荷载力: 在活载力计算中,本设计对于横向分布系数的取值作如下考虑;计算主梁活载弯距时,均采用全跨统一的横向分布系数mc,鉴于跨中和四分点剪力影响线的较大坐标位于桥跨中部,见图18,故也按不变的mc来计算。求支点和变化点截面活载剪力时,由于主要荷载集中在支点附近而应考虑支承条件的影响,按横向分布系数沿桥跨的变化曲线取值,即以支点到L/4之间,横向分布系数用mo与mc值直线插入,其余区段取mc值。(见图19和图1-10)图18 跨中截面力

5、计算图式 (尺寸单位:cm)(1):计算跨中截面最大弯距和最大剪力采用直接加载求活载力,图18 式出跨中截面力计算图式,计算公式为: S=(1+)mcPiyi 式中:S所求截面的弯距或剪力;-车辆冲击系数; -车道折减系数; mc主梁荷载横向分布系数; Pi车辆荷载的轴重;yi沿桥跨纵向与荷载位置对应的力影响线坐标值; a:对于汽车、挂车荷载力,列表计算在表17;表17荷载类型 汽-20 挂-100 1+ 1.0825 1.0 最 大 弯 距Pi1307012012060250250250250yi1.53.58.57.85.88.57.95.95.3mc 0.5197 0.3251Mmax=

6、(1+)mcPiyi2243.19 最大剪力Pi12012060250250250250yi0.50.45880.34120.50.46470.34710.3118mc 0.5197 0.3251Qmax=(1+)mcPiyi 131.96b:对于人群荷载:q=0.75×3=2.25Kn/mMmax=1/8mcql2=0.125×0.6216×2.25×342=202.098Kn.m相应:Q=0;Qmax=1/8 mcql=0.125×0.6216×2.25×34=5.944Kn相应 M=1/16×0.6216&#

7、215;2.25×342=101.049 Kn.m(2):求四分点截面的最大弯距和最大剪力(按等代荷载计算)计算公式:S=(1+)mck式中为力影响线面积,如图14所示,对于四分点弯距影响线面积为3L2/32=108.375m2,剪力影响线面积为9L/32=9.563m2,于是:Mmax=108.375(1+)mck; Qmax=9.563(1+)mck1号梁的力列表计算见表18:1号梁梁四分点截面力计算表 表18荷载类型项 目1+K(Kn/m) mc力值 汽20Mmax(Kn/m)Qmax(Kn)1.082519.236 23.204108.375 9.5630.51971172.

8、802124.835 挂100Mmax(Kn/m)Qmax(Kn)1.045.838 61.075108.375 9.5630.32511614.997189.880 人 群Mmax(Kn/m)Qmax(Kn)1.02.25108.375 9.5630.6216151.57313.375(3):求变化点截面的最大弯距和最大剪力:图19示出变化点截面力的计算图式,力计算见表19:1号梁变化点截面力计算表 表1-9荷载力 汽-20挂-100人 群 1+ 1.08251.01.0最大弯距mc 0.5197 03251 0.6216P 640 1000 q=2.25 0.9693 1.4792m=34

9、×1.9509/2Mmax=(1+)mcP=348.995KN/m 480.888 53.043最大剪力Pi601201207013070250250250250Q=2.25yi0.94910.83150.79030.56030.442600.81680.78150.66380.62850.5×0.94910.8826mi0.45490.48870.50060.51970.26510.28790.32510.6216×32.270.5×0.6307×6.77Qmax=(1+) Pi yi mi=186.653KN 215.414 25.658(

10、4):求支点截面的最大剪力:图110示出支点最大剪力计算图式,最大剪力列表计算在表110;1号梁支点最大剪力计算表 表1-10荷载 汽-20 挂-100 人 群1+ 1.0825 1.0 1.0Pi601201207013070130250250250250Q=2.25yi1.00.88240.84120.54710.4294000.80590.77060.65290.61770.50.9167mi0.43750.47130.4832 0.51970.16510.22510.32510.6216×34.000.5×0.8003×8.5Qmax=(1+) Pi yi

11、 mi=144.834KN179.89730.792图110 支点剪力(1号梁)计算图式 (尺寸单位:m)图19 变化点截面力(1号梁)计算图式 (尺寸单位:m)1.2.3 主梁力组合 本设计按“桥规”第2.1.2条规定,根据可能同时出现的作用荷载选择了荷载组合和,在表111中先汇总前面计算所得的力值,然后根据<公预规>第4.1.2条规定进行力组合与提高荷载系数,最后用粗线框出控制设计的计算力;力组合表 表11 序号荷载类别跨中截面四分点截面变化点截面支点maxmaxmaxmaxmaxmaxmax(m)()(m)()(m)()()一期横载3081.02904621.54181.23

12、75799.61319.83362.47二期横载757.180567.88544.54167.6778.6089.08总=1+23838.4705189.43225.785967.28398.43451.55人群202.0985.944151.57313.37553.04325.65830.792汽201543.7176.251172.802124.835348.995186.653144.834挂1002243.19131.961614.997189.88480.888215.414179.897汽+人=1+51745.8182.191324.38138.21402.04212.31175.

13、63恒+汽+人=3+75584.2882.196512.81363.996369.32610.74627.18恒+挂=3+66081.66131.966804.43415.666448.17613.84631.45Sj=1.2×恒+1.4×(汽+人)7050.30115.072561.45464.437723.60775.35787.74Sj=1.2×恒+1.1×挂7073.67145.168003.81479.807689.70715.07739.75汽/(8)×100%28%93%18%34%5%31%23%挂/(9)×100%3

14、7%100%24%46%7%35%28%提高后的Sj7050.30115.072561.45464.438109.78798.61811.37提高后的Sj7427.35149.528404.00494.197689.70715.07739.751.3 预应力钢束的估算与其布置1.3.1 跨中截面钢束的估算和确定 1:按使用阶段的应力要求估算钢束数:式中:M使用荷载产生的跨中弯矩,按表10取用; C1与荷载有关的经验系数,对于汽-20,C1=0.51;对于挂-100,取C1=0.565;一根32s5的钢束截面积,即:=8.4c;在第一节中已计算出成桥后跨中截面yx=119.284cm;ks=42

15、.650cm;初估ay=15cm,则钢束偏心距为:ey=yx-ay=104.284cm; (1):对(恒+汽+人)荷载组合: (2);对(恒+挂)荷载组合: 2:按承载能力极限状态估算钢束数:式中:Mj承载能力极限状态的跨中最大弯距,按表111取用; a-经验系数,一般取用0.750.77,本设计取0.76; Ry预应力钢铰线的设计强度,见表11,为1488MPa;根据上述两种极限状态,取钢束数n=7;1.3.2 预应力钢束布置 1:跨中截面与锚固端截面的钢束布置: (1)对于跨中截面,在保证布置预留管道构造要求的前提下,尽可能使用钢束群重心到截面形心的偏心距大些。本设计采用径70mm,外径7

16、7mm的预埋铁皮波纹管,根据“公预规”,管道水平净距不应小于4cm,至梁底净距不应小于5cm,至梁侧净距不应小于3.5cm,跨中截面的细部构造如图111a所示,由此可直接得出钢束群重心至梁底距离为:cm a) 跨中截面 (2):由于主梁预制时为小截面,若钢束全部在预制时拉完毕,有可能会在上缘出现较大的拉应力。考虑到这个原因,本设计预制时在梁端锚固N1N6号钢束,N7号钢束在成桥后锚固在两梁顶,布置如图111C; 对于锚固端截面,钢束布置通常考虑下述两方面:一:预应力钢束合力重心尽可能靠近截面形心,使截面均匀受压;二:考虑锚头布置的可能性,以满足拉操作方便的要求;按照上述锚头布置的“均匀”、“分

17、散”原则,锚固端截面的钢束布置如图111b)所示。 钢束群重心至梁底距离为:cm图111 b) 锚固截面 图111 c) N7号钢束纵向布置为验证上述布置的钢束群重心位置,需计算锚固端截面几何特性。图112示出计算图示计算图式,锚固端截面特性见表112所示。 ys=Si/Ai=1018144cm3/11944cm2=85.24cm ys=Si/Ai=1018480 cm3/11980 cm2=85.01 cm yx=h-ys=114.76cm故计算得;Ks=I/Ayx=46781334.56/11944×114.76=34.13cm Kx=I/Ays=46781334.56/1194

18、4×85.24=45.85cm;y=ay- Ks- Kx=86.67-(114.76-34.13)=6.04cm; 说明钢束群重心处在截面核心围。 2:钢束弯起角和线形的确定:确定钢束弯起角时,既要照顾到由其弯起产生足够的竖向预剪力,又要考虑到所引起的预应力摩擦损失不宜过大,为此本设计将锚固端截面分成上、下两部分(见图1-13),上部钢束的弯起角为15度;下部钢束弯起角为7度;在梁顶锚固的钢束弯起角为18度; N7号钢束在离支座中心线1500mm处锚固,如图(111c);锚固端截面特性 表1-12分 块名 称AiyiSiIidi=ys-yiIx=Aidi2I=Ii+Ix(cm2)(c

19、m)(cm3)(cm4)(cm)(cm4)(cm4)(1)(2)(3)=(1)+(2)(4)(5)(6)(7)=(4)+(6)翼 板18966113762275279.2411909448.7119322007三角承托6481610368518469.243106627.093111811.09腹 板940010699640027686133.33-20.764051189.4431737322.7711980-10181444678133456112 钢束群重心位置复核图式 3:钢束计算: (1):计算钢束弯起点至跨中的弯距: 锚固点到支座中心线的水平距离axi(见图1-13)为: ax1(

20、ax2)=36-40×tg70=31.09cm; ax3(ax4)=36-80×tg70=26.18cm; ax5=36-15×tg150=31.98cm; ax6=36-45×tg150=23.94cm; ax7= -(150-36×tg180/2)=-144.44cm;图114示出钢束计算图式,钢束起弯起至跨中的距离x1列表计算在表113; 图113 封端混凝土块尺寸图(尺寸单位:mm) 图114 钢束计算图式 (2):控制截面的钢束重心位置计算:各束重心位置计算(见表114): 由图114所示的几何关系,当计算截面在曲线段时,计算公式为:

21、 ai=a0+R(1-cosa) sina=x4/R 当计算截面在近锚固点的直线段时,计算公式为: ai=ao+y-x5tg 式中;ai-钢束在计算截面处钢束重心到梁底的距离; ao-钢束弯起前到梁底的距离; R-钢束弯起半径(见表1-13)表1-13钢束号弯起高度(cm)y1(cm)y2(cm)L1(cm)x3(cm)(o)R(cm)x2(cm)x1(cm)N1(N2)3112.1918.8110099.2574158.93506.851224.24N3(N4)63.312.1951.1110099.2578492.261034.95691.23N511625.8890.1210094.20

22、153404.34881.11848.87N6138.325.88112.4210094.20154058.791050.49673.45N7156.630.90125.710093.18183199.61988.73566.87:计算钢束群重心到梁底距离ay(见表1-15) 图115绘出了表115的计算结果:各计算截面钢束位置与钢束群重心位置 表1-14截面钢束x4(cm)R(cm)Sina=x4/Rcosaao(cm)ai(cm)ay(cm)四分点N1(N2)未弯起4158.93-9.09.017.42N3(N4)未弯起8492.26-16.716.7N51.133404.340.0003

23、3190.9999999.09.0N6176.554058.790.04349820.99905416.720.54N7283.133199.610.08848890.99607728.44095变化点N1(N2)345.764158.930.08313670.9965389.023.4080.62N3(N4)878.778492.260.10347890.99463216.762.29N5721.133404.340.21182670.9773079.086.26N6896.554058.790.22089100.97529916.7116.96N71003.163199.610.31352

24、570.949579928.4189.73支点N1(N2)314158.930.00745380.99997229.016.790.20 N3(N4)63.38492.260.00745380.999972216.779.8N51163404.340.03407420.99941939.0109.5N6138.34059.790.03407420.999419316.7139.2四分点截面变化点截面支点截面 图115 钢束重心的计算位置图(cm) (3):钢束长度计算: 一根钢束的长度为曲线长度、直线长度与两端拉的工作长度(2×70cm)之和,其中钢束的曲线长度可按圆弧半径与弯起角度

25、进行计算。通过每根钢束长度计算,就可得出一片主梁和一孔桥所需钢束的总长度,结实结果见表115;表115钢束号R(cm)钢束弯起角曲线长度S=R/180(cm)直线长度(cm)钢束有效长度2×(S+x1)钢束预留长度(cm)钢束长度(cm) 1 2 3 4 5 67=5+6N1(N2)4158.937o507.8521224.243464.18470×23604.2(×2)N3(N4)8492.267 o1036.999691.233456.4581403596.5(×2) N53404.3415 o890.802848.873479.3441403619

26、.4N64058.7915 o1062.050673.453471.0001403611.0 N73199.6118 o1004.678566.873143.0961403283.10 24914.9 每孔桥(五片梁)的钢束(24s5)计算长度为: 2491.49×5=1245.75m;1.4 计算主梁截面几何特性:1.4.1 截面面积与惯性矩计算 计算公式: 对于净截面:截面积:Aj=Ah-nA 截面惯性矩:Ij=I- nA(yis-yi)2 对于换算截面:截面积:Ao=Ah+n(ny-1)nA 截面惯性矩:Io=I+ n(ny-1)nA( yis-yi)2 取用主梁截面(b1=1

27、60cm)计算:ny=5.43;具体计算见表116:1.4.2 各阶段截面对形心轴的静炬计算在预应力混凝土梁在拉阶段和使用阶段都要产生剪应力,这两个阶段的剪应力应该叠加。在每一个阶段中,凡是截面中和轴位置和面积突变处的剪应力都需要计算。因此,对于每一个荷载作用阶段,需要计算四个位置(共8种)的剪应力,所以需要计算下面几种情况的截面净矩: a:aa线(图1-15)以上(或以下)的面积对中性轴净距; b:bb线以上(或以下)的面积对中性轴(两个)的净距; c:净轴(jj)以上(或以下)的面积对中性轴(两个)的净距; d:换轴(oo)以上(或以下)的面积对中性轴(两个)的净距;计算结果列表117;图

28、115 静距计算图式(cm) 其他截面特性均可用同样方法计算,下面将计算结果一并列表于118; 48 / 40 特 性分 类截面分块名称分块面积Ai(cm2)分块面积重心至上缘距离yi(cm)分块面积对上缘静距Si(cm3)全截面重心到上缘距离ys(cm)分块面积自身惯性矩Ii(cm4)di=ys+yi(cm)Iy=Aidi2(cm4)I=Ii/ Iy(cm4)b1=158cm净截面毛截面745980.71660206175.9837947313.5-4.73616730334290055.5扣管道面积(nA)-325.96184.3-60074略-108.32-38245617133.04-

29、54198737947313.5-3657258b1=160cm换算截面毛截面745980.71660206185.0137947313.516.634206383059843647.45混凝土接缝8×2=16464略93.35139428钢束换算面积(ny-1)nA260.48184.3266131略-86.9519693075.957735.48-86825637947313.521896333.9559843647.45计算数据A=×7.72=46.566cm2,n=7根,ny=5.43跨中截面面积和惯性矩计算表 表116注:*指净截面重心轴;*指换截面重心;表1-1

30、7分块名称与序号b1=158cm,ys=85.24cmb1=160cm,ys=85.01cm静距类别与符号分块面积Ai(cm2)分块面积重心至全截面重心距离yi(cm)对净轴*净距Si-j=Aiyi净距类别与符号Ai(cm2)yi(cm)对净轴*净距翼板翼缘部分对净轴*静距Sa-j(cm3)165679.24131321.44翼缘部分对换轴*静距Sa-o(cm3)168079.01132736.8三角承托82869.2457330.7284069.0157968.4肋部48073.2435155.248073.0135044.8-223707.36-225750下三角马蹄部分对净轴*静距Sb-

31、j(cm3)22584.7619071马蹄部分对换轴*静距Sb-o(cm3)22584.9919123马蹄1250102.261278251250102.49128113肋部30082.262467830082.4924747管道和钢束-325.9699.06-32290260.4899.2925863-139284-197846翼板净轴以上净面积对净轴静矩Sj-j(cm3)165679.24131221.44净轴以上净面积对净轴静矩Sj-o(cm3)168079.011327368三角承托82869.2457330.7284069.0157968.4肋部1704.842.6272659170

32、4.840.8269589.95-261211-260295.2翼板换轴以上净面积对净轴静矩So-j(cm3)165679.24131221.44换轴以上换算面积对换轴静矩So-o(cm3)168079.01132736.8三角承托82869.2457330.7284069.0157968.4肋部1700.242.51722671700.242.5172275.5-260819.16-210980.7主梁截面特性值总表 表118名称符号单位截面跨中四分点变化点支点混凝土净截面净截面Ajcm27133.047133.048520.6911980净惯矩Ijcm434290055.534290055

33、.53889393546781434净轴到截面上缘距离yjscm75.9875.1887.9285.01净轴到截面下缘距离yjxcm124.02124.98112.08114.99截面抵抗矩上缘Wjscm3451303.70451303.70442378.70550305.07下缘Wjxcm3276488.11296488.11347019.4140683046对净轴静距翼缘部分面积Sajcm3223707223824304764273884净轴以上面积Sjjcm3261211261478364768483798换轴以上面积Sojcm3260819261206364694483706马蹄部分面

34、积Sbjcm31392841393362769040钢束群重心到净轴距离ejcm99.0697.2333.7630.28混凝土换算截面换算面积Aocm27745.387745.389874.8013468换算惯矩Iocm459843647.455993752.406439460869834636换轴到截面上缘距离yoscm85.0185.1894.3490.28换轴到截面下缘距离yoxcm114.99114.82105.62109.72截面抵抗矩上缘Woscm3703960.10703624.71682291773534下缘Woxcm3520424.80521988.7960968236348

35、1对换轴静矩翼缘部分面积Saocm3225750225368285368325368净轴以上面积Sjocm3260295260018361768467818换轴以上面积Soocm3210981210672380692470692马蹄部分面积Sbocm31978461975433976430钢束群重心到净轴距离eocm99.2998.6640.1436.17钢束群重心到截面下缘距离aycm15.0717.4280.6290.201.5 钢束预应力损失计算1.5.1 预应力钢束与管道壁之间的摩擦损失(s1见表1-19); 按规,计算公式为:k=0.75Rby=0.75×1860=1395

36、MPa;四分点截面管道摩擦损失s1计算表 表119钢束号=-x+kxk(O)(rad)(m) MPaN1(N2)70.12229.32140.03250.032044.64N1(N2)70.12229.25310.03240.0319844.50N514.91200.26019.36830.05880.057179.65N612.50760.21829.26690.05070.049468.91N79.92320.17316.76340.03970.038954.27表中见表113,其中有cosa求反得;1.5.2 由锚具变形、钢束回缩引起的损失(s2,见表1-20)按规,计算公式为:s2计算

37、表 表1-20钢束号N1(N2)N3(N4)N5N6N7L(mm)(见表1-15)3604.23596.53619.43611.03283.1(MPa)63.2663.40629963.1469.45注:本设计未考虑反向摩阻损失。1.5.3混凝土弹性压缩引起的损失(s4见表21) 计算公式为:s4=nyhls4=+1.5.4由钢束预应力松弛引起的损失(s5) 按规,对于作超拉的钢丝束由松弛引起的应力损失的终极值,按下式计算:s5=0.045k=0.045×1395=62.78MPa四分点截面s4计算表 表121数据Aj=7133.04cm2Ay=8.4 cm2 Io=34290172

38、cm4 yix=85.31cm ny=5.43钢束号锚固时预加纵向轴力Nyo=Ay yocosa Nyo(0.1KN)eyi=yjx-ai(cm)预加弯矩Myo=Nyo eyi(N。m) Myo计算应力损失的钢束号相应钢束净轴距离eyjh1(Mpa)s4=nyh1(Mpa)锚固钢束应力yo=k-s1-s2-s4(Mpa)yo×Aycosa(见表1-14)Nyo(0.1KN) Nyo/Aj Myo/Ij×eyi合计N31291.8110851.21.010851.210851.298.2910665651066565N2105.991.523.064.584.71N21266

39、.6110639.521.010639.5221490.73105.9911276832194248N498.293.016.789.7920.49N41242.8810440.191.010440.1931930.9298.2910261663220414N1105.994.489.2313.7144.22N11216.4810218.41.010218.442149.31105.9910830484303462N698.295.9113.3019.2170.62N61173.929860.930.99990549851.63352000.9598.299683175271779N5105.

40、997.2915.1122.4089.03N51134.609530.640.9999999530.63267531.58105.99101015262819311.5.5 混凝土收缩和徐变引起的损失(s6)按规,计算公式如下:式中:s6全部钢束重心处的预应力损失值;h钢束锚固时,在计算截面上全部钢束重心处由预加应力(扣除相应阶段的应力损失)产生的混凝土法向应力,并根据拉受力情况,考虑主梁重力的影响;配筋率,; A为钢束锚锚固时相应的净截面积Aj;A=1+eA2/r2 eA钢束群重心到截面净轴的距离ej; r截面回转半径r2=Ij/Aj;-加载龄期为时的混凝土徐变系数终值; -自混凝土龄期开始

41、的收缩应变终值; 1.徐变系数和收缩应变系数的计算构件理论厚度=式中:Ah主梁混凝土截面面积; u与大气接触的截面周边长度。u=740.16,=20.15cm,=2.2,=0.23×103 跨径四分点截面s6计算表 表1-22计算数据Nyo=6153.158KN Myo=7733.730KN My1=3478.84KN Ij=34290172cm4Aj=7133.04cm2 eA= ej=97.23 Ey=1.9×105MPa ny=5.43计算hNyo/Aj(MPa)Myo-Mgo/Ij×ej(MPa)h(MPa)(1)(2)(3)=(1)+(2)8.62612

42、.03920.665计算应力损失计算公式:分子项分母项(4)nyh246.864r2=Ij/Aj4807.231(5)Ey43.7A=1+eA2/r22.967(6)(4)+(5)290.5641+10A0.824%1.149s6=290.564/1.149=252.88MPa1.5.6 成桥后拉N7号钢束引起的混凝土弹性压缩损失成桥后四分点s4,计算表 表523计 算数 据Ao=9874.80cm2Ay=8.4 cm2 Io=64394608cm4 yox=105.62cm ny=5.43钢束号锚固时预加纵向轴力Nyo=Ay yocosaeyi=yjx-ai(cm)预加弯矩Myo=Nyo e

43、yi(N。m)计算应力损失的钢束号相应钢束净轴距离eyjh1(Mpa)=s4,nyh1(Mpa)锚固钢束应力yo=k-s1-s2-s4-s5-(s6Mpa)yo×Aycosa(见表1-14)Nyo(0.1KN)Ny7/AoMy7/Io×eYvo合计N7*1271.2810678.750.99607710636.8664.67687886N389.921.080.962.0411.08N3966.738120.531.08120.5388.92722078N296.621.081.032.1111.46N2950.957987.981.07987.9896.62771755N

44、489.921.080.962.0411.08N4927.227788.651.07788.6588.92692567N196.121.081.032.1111.46N1900.827566.891.07566.8996.62731113N685.081.080.911.9910.81N6858.267209.380.9990547202.5688.98612794N596.621.081.032.1111.46N5847.677120.430.9999997120.4296.62687975N7955.628027.210.9960777995.72105.62844508*-64419.61-57506361.5.7 预加力计算传力锚固应力y0与其产生的预加力: 1.y0=k-s1=k-s1-s2-s3 2.由y0产生

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论