T检验F检验单因素分析_第1页
T检验F检验单因素分析_第2页
T检验F检验单因素分析_第3页
T检验F检验单因素分析_第4页
T检验F检验单因素分析_第5页
免费预览已结束,剩余6页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、配对t检验的目的是检验两个样本均数所代表的未知总体均数是否有差别1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probabilitydistribution)进行比较,我们可以知道在多少的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设nullhypothesis,Ho

2、)0相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。统计显著性(sig)就是出现目前样本这结果的机率。2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关

3、联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。3,T检验和F检验至於具体要检定的内容,须看你是在做哪一个统计程序。举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。两样本(如某班男生和女生)某变量(如身高)的均数并不相同,但这差别是否能推论至总体,代表总体的情况也是存在著差异呢?会不会总体中男女生根本没有差

4、别,只不过是你那麽巧抽到这2样本的数值不同?为此,我们进行t检定,算出一个t检定值。与统计学家建立的以总体中没差别作基础的随机变量t分布进行比较,看看在多少的机会(亦即显著性sig值)下会得到目前的结果。若显著性sig值很少,比如0.05(少於5%机率),亦即是说,如果总体真的没有差别,那麽就只有在机会很少(5%)、很罕有的情况下,才会出现目前这样本的情况。虽然还是有5%机会出错(1-0.05=5%),但我们还是可以比较有信心的说:目前样本中这情况(男女生出现差异的情况)不是巧合,是具统计学意义的,总体中男女生不存差异的虚无假设应予拒绝,简言之,总体应该存在著差异。每一种统计方法的检定的内容都

5、不相同,同样是t-检定,可能是上述的检定总体中是否存在差异,也同能是检定总体中的单一值是否等於0或者等於某一个数值。至於F检定,方差分析(或译变异数分析,AnalysisofVariance),它的原理大致也是上面说的,但它是透过检视变量的方差而进行的。它主要用于:均数差别的显著性检验、分离各有关因素并估计其对总变异的作用、分析因素间的交互作用、方差齐性(EqualityofVariances)检验等情况。3,T检验和F检验的关系t检验过程,是对两样本均数(mean)差别的显著性进行检验。惟t检验须知道两个总体的方差(Variances)是否相等;t检验值的计算会因方差是否相等而有所不同。也就

6、是说,t检验须视乎方差齐性(EqualityofVariances)结果。所以,SPSS行t-testforEqualityofMeans的同时,也要做LevenesTestforEqualityofVariances。1.在LevenesTestforEqualityofVariances一栏中F值为2.36,Sig.为.128,(sig.值大于0.05表示方差齐,p值小于0.05,表示拒绝方差整齐的假设)表示方差齐性检验没有显著差异,即两方差齐(EqualVariances),故下面t检验的结果表中要看第一排的数据,亦即方差齐的情况下的t检验的结果。2.在t-testforEquality

7、ofMeans中,第一排(Variances=Equal)的情况:t=8.892,df=84,2-TailSig=.000,MeanDifference=22.99既然Sig=.000,亦即,两样本均数差别有显著性意义!3.至U底看哪个LevenesTestforEqualityofVariances栏中sig,还是看t-testforEqualityofMeans中那个Sig.(2-tailed)啊?答案是:两个都要看。先看LevenesTestforEqualityofVariances,如果方差齐性检验没有显著差异,即两方差齐(EqualVariances),故接著的t检验的结果表中要看

8、第一排的数据,亦即方差齐的情况下的t检验的结果。反之,如果方差齐性检验有显著差异,即两方差不齐(UnequalVariances),故接著的t检验的结果表中要看第二排的数据,亦即方差不齐的情况下的t检验的结果。4.你做的是T检验,为什么会有F值呢?就是因为要评估两个总体的方差(Variances)是否相等,要做LevenesTestforEqualityofVariances,要检验方差,故所以就有F值。另一种解释:t检验有单样本t检验,配对t检验和两样本t检验。单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。配对t检验:是采用配对设计方法观察

9、以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。F检验又叫方差齐性检验。在两样本t检验中要用到F检验。从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t,检验或变量变换或秩和检验等方法。其中要判断两总体方差是否相等,就可以用F检验。若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互

10、独立,两组资料均取自正态分布的总体,并满足方差齐性。之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。简单来说就是实用T检验是有条件的,其中之一就是要符合方差齐次性,这点需要F检验来验证。T T 检验,亦称 studenttstudentt 检验(StudentsttestStudentsttest),主要用于样本含量较小(例如 n30n30),总体标准差 b 未知的正态分布资料。T T 检验是用于小样本(样本容量小于 3030)的两个平均值差异程度的检验方法。它是用 T T 分布理论来推断差异发生的概率,从而判定两个

11、平均数的差异是否显著。单个样本的 t 检验目的:比较样本均数所代表的未知总体均数心和已知总体均数 r计算公式:t t 统计量:自由度:v=n-v=n-1 1适用条件:(1)(1)已知一个总体均数;(2)(2)可得到一个样本均数及该样本标准误;(3)(3)样本来自正态或近似正态总体。例 1 1 难产儿出生体重 n=35,n=35,X X=3.42,S=0.40,=3.42,S=0.40,一般婴儿出生体重比=3.30=3.30(大规模调查获得),问相同否?解:1.1.建立假设、确定检验水准 a aH Ho:心= =0心(无效假设,nullhypothesis)nullhypothesis)H H1

12、:/(备择假设,alternativehypothesis,),alternativehypothesis,)双侧检验,检验水准:a=0.05a=0.052 2 .计算检验统计量3 3 . .查相应界值表,确定 P P 值,下结论查附表 1:1:t t0.05/2.34= =2.032,t2.032,t= =1.77,t1.77,t 0.05,P0.05,按 a=0.05a=0.05 水准,不拒绝 H H。,两者的差别无统计学意义附表t界值表自蛾概率,尸单处0.250/05a025a010.0050,0025双假:0.500L10Ci05aosaoio0.00501L0006L3M12.706

13、3L82163.657 127,32101816之侬13036L9659.稣11089a766213531LS24540S.8417.465(J.74!2132Z77617474.6045L59731。由16962040工烟Z7U2.022321682L694Z0&72.449Z7381015340.682L691208224412.7283,002006745L6449 L96002.32632.575828Q70X-网3.42-3.300.40/V35177, ,v=n-1=35-1=34v=n-1=35-1=34编辑配对样本 t 检验配对设计:将受试对象的某些重要特征按相近的原则

14、配成对子,目的是消除混杂因素的影响,一对观察对象之间除了处理因素/研究因素之外,其它因素基本齐同,每对中的两个个体随机给予两种处理。两种同质对象分别接受两种不同的处理,如性别、年龄、体重、病情程度相同配成对。同一受试对象或同一样本的两个部分,分别接受两种不同的处理*自身对比。即同一受试对象处理前后的结果进行比较。目的:判断不同的处理是否有差别计算公式及意义:t-It统计量:Sjfn自由度:v=v=对子数-1-1适用条件:配对资料编辑T 检验的步骤1 1、建立虚无假设 H H0:1= =为即先假定两个总体平均数之间没有显著差异;2 2、计算统计量 T T 值,对于不同类型的问题选用不同的统计量计

15、算方法;1)1)如果要评断一个总体中的小样本平均数与总体平均值之间的差异程度,其统计量 T T 值的计算公式为:3 3、根据自由度 df=n-1df=n-1,查 T T 值表,找出规定的 T T 理论值并进行比较。理论值差异的显著水平为 0.010.01 级或 0.050.05 级。不同自由度的显著水平理论值记为 T(df)0.01T(df)0.01 和 T(df)0.05T(df)0.054 4、比较计算得到的 t t 值和理论 T T 值,推断发生的概率,依据下表给出的关系表作出判断。T 值与差异显著性关系表TP 值差异显著程度-JTr(o.oiPT)0项P005差异显著T0.05差异不显

16、著5 5、根据是以上分析,结合具体情况,作出结论2)2)如果要评断两组样本平均数之间的差异程度,其统计量T T 值的计算公式为:T T 值与差异显著性编辑T 检验举例说明例如,T T 检验可用于比较药物治疗组与安慰剂治疗组病人的测量差别。理论上,即使样本量很小时,也可以进行 T T 检验。(如日本量为 10,10,一些学者声称甚至更小的样本也行),只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。方差齐性的假设可进行 F F 检验,或进行更有效的 LevenesLevenes 检验,如果不满足这些条件,只好使用非参数检验代替 T

17、 T 检验进行两组间均值的比较。T T 检验中的 P P 值是接受两均值存在差异这个假设可能犯错的概率。在统计学上,当两组观察对象总体中的确不存在差别时,这个概率与我们拒绝了该假设有关。一些学者认为如果差异具有特定的方向性,我们只要考虑单侧概率分布,将所得到 t-t-检验的 P P 值分为两半。另一些学者则认为无论何种情况下都要报告标准的双侧 T T 检验概率。1 1、数据的排列为了进行独立样本 T T 检验,需要一个自(分组)变量(如性别:男女)与一个因变量(如测量值)。根据自变量的特定值,比较各组中因变量的均值。用 T T 检验比较下列男、女儿童身高的均值。性别身高对象 1男性111对象

18、2男性110对象 3男性109对象 4女性102对象 5女性104男性身高均数=110女性身高均数=1032 2、T T 检验图在 T T 检验中用箱式图可以直观地看出均值与方差的比较,见下图:ml这些图示能够很快地估计并且直观地表现出分组变量与因变量关联的强度 O O3 3、多组间的比较科研实践中,经常需要进行两组以上比较,或含有多个自变量并控制各个自变量单独效应后的各组间的比较,(如性别、药物类型与剂量),此时,需要用方差分析进行数据分析,方差分析被认为是 T T 检验的推广。在较为复杂的设计时,方差分析具有许多 t-t-检验所不具备的优点。(进行多次的 T T 检验进行比较设计中不同格子

19、均值时)。编辑T 检验注意事项要有严密的抽样设计随机、均衡、可比选用的检验方法必须符合其适用条件(注意:t t 检验的前提是资料服从正态分布)单侧检验和双侧检验单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第I错误的可能性大。假设检验的结论不能绝对化不能才 1 1 绝 H0,H0,有可能是样本数量不够拒绝 H0H0,有可能犯第I类错误正确理解 P P 值与差别有无统计学意义P P 越小,不是说明实际差别越大,而是说越有理由拒绝 H0H0,越有理由说明两者有差异,差别有无统计学意义和有无专业上的实际意义并不完全相同假设检验和可信区间的关系结论具有一致性差异:提供的信息不同区间估计给出总体均

20、值可能取值范围,但不给出确切的概率值,假设检验可以 2 2出 H0H0 成立与否的概率.en/news/spss/doc3/sp05.htm#j2重要方差分析(ANOVA,analysisofvariance也叫F检验,由英国统计学家R.A.Fisher首先提出,因此也以他的名字命名。1 .为什么要使用方差分析与t检验一样,方差分析也是比较样本平均数的一种方式。t检验比较的是两个样本平均数的差异,当样本个数增多,如果仍用t检验进行两两比较,那么就会增加犯错的概率。因为每次检验不犯错的概率为1-0.05=0.95,那么多次(n次)检验下来,不犯错的概率则为(1

21、-0.05)*n,随着n的增大,犯错的概率就会逐渐增多。因此,当n大于2时,需要使用方差分析,它可以有效地控制第一类错误。2 .方差分析的基本思想方差分析的统计思想与变异”紧密联系。全部测量值与总平均数的差异为总变异;各组平均数与总平均数的差异为组间变异,反映随机误差与处理的作用;每组的原始数据与该组平均数的差异为组内变异,反映随机误差的影响。影响事物(如:因变量)的因素有多种,根据不同的处理分为不同的组别(或:不同的处理条件),方差分析的基本的假设是-H0:各样本来自均数相等的总体(即:各条件之间无显著差异);H1:各样本均数不等或不全相等,表明各样本并非来自同一总体(各条件之间存在显著差异

22、)。以下以样本”、总体力为例来说明。在此,样本”类似于实验或调查中的各种条件”(即不同水平的自变量)。样本中的个体差异产生组内变异; 如果调查的样本分为不同组别, 那么组问也可能存在差异,即为组间变异,组间变异可能是抽样导致的,也可能由各组的处理不同导致;组内变异和组间变异加在一起,形成总变异。组间变异除以组内变异,可以看出二者的关系。若二者的比等于1,则表明,组间变异是由组内变异造成的,不存在处理的作用,当然这是理论上的,世界上没有两片完全相同的叶子,也没有两个完全相同的人,由于实际上存在抽样误差,因此,组间与组内变异往往不会刚好相等,但如果不会相差太大,那么接受各样本来自均数相等的总体”的

23、假设;但如果两者的明显大于1且超出了某个临界佰,则表明组间变异远大于组内变异, 此时接受各总体的均数不全相等”的假设, 意味着二者的差异不仅是抽样误差导致的,更有处理的作用。变异由均方”度量,均方是由离差平方和(SS,sumofsquares和自由度(df,freedom)得到的,均方=离差平方和/自由度,使用均方可以消除各组样本量(即自由度)的影响。根据实验目的和各种条件,把总差异以及总自由度分为不同的部分,再算出各种条件下的变异(MS1、2、3),比较不同条件的变异与组内变异,就可得出是否处理起了作用。常说的差异显著”其实是比较出了不同处理的作用。3 .方差分析的前提及种类方差分析的前提是:(1)数据具有可比性,数据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论