PKPM计算结果的分析_第1页
PKPM计算结果的分析_第2页
PKPM计算结果的分析_第3页
PKPM计算结果的分析_第4页
PKPM计算结果的分析_第5页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、计算机的后处理结果,即最终打印结果指内力图、配筋图和详细的内力及配筋表(按构件编号依次输出),有抗震计算时还输出中间分析结果(如自震周期、振型、位移、底部总剪力等)设计人应认真对最终打印结果进行分析,确认无误或无异常情况后再绘制施工图,必要时应将最终确定的构件编号、构件截面和配筋数量、规格绘制成简单的平面图,供校核审定和归档用。对最终打印结果不进行分析,盲目采用其配筋直接绘制施工图的做法是不可取的,往往会造成不良的严重后果,既对工程不负责任、有不利于提高自己的设计水平。一、整体分析一、对重力荷载作用下计算结果的分析审查重力荷载作用下的内力图是否符合受力规律;可以利用结构底层检查竖向内外力的平衡

2、,即底层柱、墙在重力荷载作用下的轴力之和应等于总重量;如果结构对称、荷载对称,其结构内力图必然对称,即检查其对称性。当以上三者出现异常情况时,需要返回原始数据进行检查。二、对风荷载作用下计算结果的分析审查风荷载作用下的内力图和位移是否符合受力规律;可以利用结构底层检查侧向内外力的平衡,即底层柱、墙在风荷载作用下的剪力之和应等于全部风力值(需注意局部坐标与整体坐标的方向);如果结构沿竖向的刚度变化较均匀、且风荷载沿高度的变化也较均匀时,其结构的内力和位移沿高度的变化也应该是均匀的,不应有大正大负、大出大进等突变。三、对水平地震荷载作用下计算结果的分析水平地震荷载作用下,可以利用其结果进行如同风荷

3、载作用下的渐变性分析,但不能进行对称性分析,也不能利用结构底层进行内外力平衡的分析(因为振型组合后的内力与地震作用力不再平衡)。水平地震荷载作用下,对其计算结果的分析重点如下。1.结构的自振周期对一般的工程,结构的自振周期在考虑折减系数后应控制在一定的范围内。如结构的基本自振周期(即第一周期)大致为:框架结构 T1(0.120.15)n框-剪和框-筒结构 T1(0.080.12)n剪力墙和筒中筒结构 T1(0.040.06)n式中,n 为建筑物的总层数。第二周期、第三周期与第一周期的关系大致为:T2P(1/3-1/5)T1T3P(1/5-1/7)T1周期偏长,说明结构过“软”、所承担的地震剪力

4、偏小,应考虑抗侧力构件(柱、墙)截面太小或布置不当;如周期偏短,说明结构过“刚”、所承担的地震力偏大,应考虑抗侧力构件截面太大或墙的布置太多或墙的刚度太大(宜设结构洞予以减小其刚度)。如果抗侧力构件的截面尺寸、布置都很正常,无特殊情况而自振周期偏离太远,则应检查输入数据是否有错误。对 20 层以上的高层建筑结构,如果一切正常,其基本自振周期往往在 2.03.0 之间(叫次长周期),则需要增加地震力(调整系数取 1.51.8)重新进行计算。以上的判断是根据平移振动振型分解方法得出来的。考虑弯扭耦连振动时情况要复杂得多,可以挑出与平移振动相对应的自振周期来进行上述比较,至于扭转周期的合理数值,由于

5、缺乏经验尚难提出。2.各振型曲线对于竖向刚度和质量比较均匀的结构,如果计算正常,其振型曲线应是比较连续光滑的曲线(见图 5-4),不应有大进大出、大的凹凸曲折。三、剪力墙结构的位移曲线,具有悬臂弯曲梁的特征,位移越往上增长越快,呈外弯型曲线;四、框架结构的位移曲线,具有剪切梁的特征,位移越往上增长越慢,呈内收型曲线;五、-剪结构及框-筒结构的位移曲线,介于以上两者之间,呈反 S 型曲线、中部接近为直线。在竖向刚度较均匀的情况下,以上三种曲线均应连续光滑、无突然凹凸变化和明显的折点。六、层间水平位移的限值抗震规范提出的层间弹性位移角和层间弹塑性位移角限值,实际上是控制层间水平位移不得过大,避免带

6、来结构的 P-效应。两个阶段的层间位移要分别满足以下要求:AUe0eHAU 产0pH式中 AUe-多于地震作用标准之产生的层间弹性位移; AUp-罕遇地震作用下按弹性分析产生的层间位移;0e一层间弹性位移角限制;0p一层间弹塑性位移角限制;H 一第二阶段时指薄弱层(部位)的层高;由于规范对层间弹性位移角限制放松较多,所以第一阶段抗震的变形验算往往容易满足。而对结构的自振周期、各振型曲线、水平位移特征和结构承受的地震力大小,规范并未提出定性或定量的要求,于是不少设计人会造成一种误解,认为满足层间弹性位移角限制即为合理的结构。事实上,这种理解是片面的。因为抗震计算中,自振周期、水平位移、地震力大小

7、均与结构的刚度有关。结构刚度偏小时,自振周期偏长,水平地震力也偏小,水平位移也偏小,虽然位移也有可能在限制范围内,但由于承担的地震力太小,结构并不安全。5.地震力大小结构承担的地震力大小可用底部总剪力与结构总质量之比(剪质比)来衡量。对抗侧力构件布置、截面尺寸都比较正常的结构,其剪质比在下述范围内:8 度近震,n 类场地 Fek/G0.030.067 度近震,n 类场地 Fek/G0.0150.03式中 Fek结构总水平地震作用标准值G结构等效总重力荷载(即结构总质量)。层数多、刚度小的结构,其剪质比偏小,如小于上述范围或接近最小值,宜适当增大构件截面或提高结构刚度,从而增大地震力以保证结构的

8、安全;反之,地震力过大,宜适当渐低结构刚度,以取得合理的经济技术指标。对框剪结构,还要分析剪力墙部分的承受的地震倾覆力矩是否大于结构总地震倾覆力矩的50%以检查其框架部分的抗震等级确定的是否合适。宜绘出结构的整体弯矩图和剪力图,分析沿高度的受力状况。七、构件分析八、定性分析定性分析的目的,是在整体分析的基础上进一步判断计算结果是否大体正常。一般来说,设计较正常的结构,基本上应符合以下的规律:九、柱、墙的轴力设计值绝大部分为压力;一 0、柱的箍筋大部分为构造配筋;十一、墙的竖向和水平分布钢筋大部分为构造配筋;十二、梁基本上无超筋(连系梁除外);十三、柱的轴压比在限值以内,并有一定的余量;十四、除

9、个别墙段外,剪力墙截面符合抗剪要求;十五、梁截面不满足抗剪要求或抗扭超限的情况不多。如计算结果出现严重错误,应考虑以下原因并采取相应的措施:十六、采用解密盗版程序;十七、几何数据或荷载数据错误;十八、复杂开洞剪力墙和框支剪力墙的上下连接不恰当,出现过大的拐角刚域;十九、对竖向体型复杂的框剪结构进行了框架剪力调整。有的计算结果出现所谓的“异常”情况,这并非是计算错误,而是三维空间分析方法与简化计算方法的差别造成的。例如:二 0、次梁端部负弯矩。这是因为三维空间分析时考虑了次梁与主梁的共同作用,按其刚度关系、位移协调条件计算得出的,反映了次梁的实际受力状况。而手工计算时,次梁两端按钱支处理,无负弯

10、矩。二十一、主梁的受扭。按简化平面框架计算时,所有内力均在框架平面之内,所以主梁的扭矩无法考虑;实际上梁是空间受力的,次梁、悬臂梁的根部弯矩均对主梁产生扭矩。二十二、悬臂梁的正弯矩。手工计算悬臂梁时只有负弯矩;而空间计算时,当上下几层悬臂梁端有小柱连接而构成小框架时,必然出现悬臂梁的正弯矩。二十三、柱的轴力。手工计算时,柱的轴力是按楼面荷载的面积大小求得的;而空间分析时,由于梁的刚度影响,柱的轴力要在各柱之间重新分配,并不等于前者计算得到的轴力。一般的计算结果表明,中柱重新分配的轴力要比按荷载面积求得的轴力小,边、角柱重新分配的轴力要大于按荷载面积求得的轴力。二十四、临近剪力墙的框架柱轴力。考

11、虑框剪结构的空间整体作用后,框架柱的一部分轴力邀传递到邻近的剪力墙上,因此该柱的轴力就会变小。柱靠墙越近,梁的刚度越大,这一现象越明显;而采用简化的平面框架分析方法时,各片框架是独立计算的,框架柱不存在轴力减小的问题。定量分析定量分析的目的,是为了判断构件的配筋是否合理,有无钢筋超限情况,是否有遗留问题需要处理。(详见第五节构件配筋的确定)二十五、遗留问题的处理二十六、所有梁的正负配筋必须考虑活荷载最不利分布的影响,乘以 1.2 的增大系数(软件如已考虑其影响着除外)。地震区框架梁的负钢筋可不再增加。二十七、对空间分析的平面交叉梁,其主梁正钢筋应在乘以 1.2-1.5 的增大系数(不含上述活荷

12、载不利分布影响的增大系数);其次梁的负钢筋不得小于次梁的正钢筋。二十八、凡净跨7 米的大梁,一般要进行挠度和裂缝宽度的计算并满足规范的有关规定;净跨 W7 米的大梁,可不进行挠度和裂缝宽度的计算,但仍应酌情增加其配筋量。二十九、悬挑梁的根部钢筋,如悬臂端构造柱按不传力计算,其负钢筋应乘以 1.21.8 的增大系数(下层取 1.8,以上递减);如悬臂端构造柱按传力计算时,应配置正钢筋。三 0、任何三维空间程序都不可能是包罗万象的,凡程序未加考虑的构件和部位且影响安全时均应进行补充计算(采用小构件计算程序或手算)如折线式楼梯、螺旋式楼梯、圆弧梁、阳台、雨篷、挑檐、井式楼盖、转换层大梁、局部受压、节

13、点核心区抗剪、牛腿等。三十一、柱下独立基础、条形基础、十字交叉梁基础、筏形基础、箱形基础和人防地下室都有相应的程序可供采用。但取上部结构传来的内力时,应考虑下述问题:三十二、基础顶面上所受的内力(轴力、弯矩和剪力)应取同一种工况作用的组合内力进行设计,再取另一种(或几种)工况作用的组合内力进行验算,按最不利的结果确定基础构件的截面和配筋。不要误用最大轴力、最大弯矩、最大剪力的打印结果进行设计,因为它是不同工况产生的最大内力,不可能同时出现。三十三、直接按荷载面积求得的基础顶面(即柱脚)轴力来进行基础设计,对边角柱是不安全的。三十四、直接按剪力墙荷载面积求得的墙基础顶面(即墙底部)的轴力来进行基

14、础设计,也是不安全的,应适当增大墙底部的轴力。三十五、主次梁相交处的无柱连接点,对次梁端部负钢筋不应少于跨中正钢筋,对主梁不应出现跨中负钢筋。三十六、框架梁的配筋三十七、梁的纵向钢筋三十八、梁应处于单筋受力状态。如果计算结果为双筋受力状态,应加大梁截面尺寸,按其内力重新计算求得配筋面积。三十九、梁不设弯起钢筋,应为弯起钢筋起不到双向抗剪的作用,从而不能保证水平地震荷载作用下梁端塑性校区段的转动能力。四 0、梁的纵向受拉钢筋的最小配筋率:一级抗震支座为 0。4%跨中为 0。3%抗震二级时支座为 0。3%跨中为 0。25%抗震三、四级时,支座为 0.25%,跨中为 0.2%。四十一、梁端纵向受拉钢

15、筋的配筋率不应大于 2.5%,且混凝土受压区高度与有效高度之比,抗震一级不应大于 0.25,抗震二、三级不应大于 0。35%四十二、受牛纵向钢筋应沿梁截面周边均匀布置,一般可在上下两边各配置 15%20%左右两边各配置 35%30%四十三、梁端截面的底部和顶面配筋量之比,除按计算确定外,抗震一级时不应小于0.5,抗震二、三级时不应小于 0。3。四十四、梁内贯通中柱的各根纵向钢筋,抗震一、二级时不宜大于柱截面高度的 1/20。四十五、梁顶面和底面至少有两根直径不小于 14mm 的通常钢筋伸入支座,其面积不得小于两端相应底面和顶面配筋中最大值的 1/4,同时其配筋率不得小于纵向受拉钢筋的最小配筋率

16、。四十六、当梁的截面高度超过 700 时,在梁的两侧面每隔 300400mm 应设置直径不小于 10mmM 纵向构造钢筋(即腰筋)。位于梁两侧的受扭纵向钢筋可兼作腰筋。四十七、梁顶面纵向钢筋的净距,不应小于 30mm 和 1.5d(d 为钢筋的最大直径);梁底面纵向钢筋的净距,不应小于 25mm 和 d。当梁底面纵向钢筋配置多于两层时,其上层钢筋水平方向的中距应比上面两层钢筋的中距大一倍。四八、的箍筋四九、梁端加密区的箍筋配置最低要求五 0、箍筋的最小直径:抗震一级为(j)10、二、三级为(j)8、四级为(j)6。五一、箍筋的最大间距:抗震一二级为 100mm;三四级为 150mm。五二、箍筋

17、的肢距:抗震一二级不应大于 200mm,三四级不宜大于 250mm.五三、承受地震力为主的框架梁,沿梁全长的最小配箍率:抗震一级为 0.035fc/fyv,抗震二级为 0.030fc/fyv,抗震三四级为 0.025fc/fyv,式中 fc 和 fyv 分别为混凝土和箍筋强度设计值。五四、电算时梁箍筋的间距按梁端加密区箍筋间距输入,所得计算结果亦为梁端箍筋的计算值,此时计算剪力已考虑梁端的“强剪弱弯”放大系数,故梁端箍筋计算值小于构造配箍时,可按上述构造要求配箍,当梁端箍筋为计算配置时,必须按计算配足,且满足上述的构造要求。五十五、梁的中段配箍要求五十六、当梁端为构造配箍时,梁中段配箍可适当减

18、小(一般箍筋直径和肢数不变,箍筋间距可加大一倍,但不应小于沿梁全长的最小配箍率。五十七、当梁端为计算配箍时且梁剪力沿跨长变化不大时,一般情况下中段配箍不予减小;只有梁的一端或两端为框架柱且梁剪力沿跨长变化较大时,中段配筋方可适当减少(抗震一级可减少 20%,二级可减少 10%)。五十八、当按 HPB235 钢筋计算,而实际采用 HRB335 钢筋配箍时,箍筋用量可减少 15%)。五十九、梁的箍筋直径不宜大于 14mm,可增加箍筋肢数或减小箍筋间距来减小其直径。六 0、框架柱的配筋六一、柱的纵向钢筋1 .柱的纵向钢筋的最小配筋率,应理解为柱截面对边两侧计算配筋面积之和与柱全截面面积之比。对中柱和

19、边柱,一级抗震为 0。8%抗震二级为 0。7%抗震三级为 0.6%四级为 0.5%对角柱和框支柱,相应增大 0。2%。2 .应采用对称配筋,柱截面对边两侧计算配筋面积之和(2Asx 或 2Asy)小于最小配筋率得出的构造配筋面积时,按构造配筋面积配置;反之,按计算配筋面积配置,计算配筋面积时已考虑“强柱弱梁”的放大系数。实配钢筋时尚应考虑调整后实配梁纵向钢筋,按“强柱弱梁”关系再予以增大。3 .柱的纵向钢筋最大配筋率为 4%,是指柱截面四侧全部纵向钢筋的截面面积与柱全截面面积(总配筋率大于 3%时为净混凝土截面面积)之比。4 .柱纵向钢筋的总配筋量不小于计算得出的 2Asx+2Asy(角筋不得

20、公用),且不大于其最大配筋率。这里,Asy、Asy 分别为 X 方向、Y 方向按对称配筋计算得出的单侧配筋面积。5 .柱截面尺寸大于 1.5m 时,应在截面中部另加一圈构造纵向配筋,其直径与周边主要受力纵向钢筋相同。6 .纵向钢筋的间距不宜大于 200mm 直径不宜小于 14mm.六二、柱的箍筋六十三、柱端加密区的箍筋配置最低要求六十四、箍筋的最小直径:抗震一级为()10、二、三级为()8、四级为()6o(抗震二三级柱截面尺寸不大于 400mm 寸,可采用。6)。六十五、箍筋的最大间距:抗震一级为 100mm;抗震二级为 100mm(当箍筋直径不小于()10 时为 150mm,三四级为 150

21、mm。六十六、箍筋的肢距:抗震一级不宜大于 200mm,抗震二级不宜大于 250mm,三四级不宜大于 300mm.六十七、柱的体积配箍率,指在一个箍筋间距范围内、全部箍筋的体积(扣除重叠部分)与混凝土体积之比。箍筋的最小体积配箍率,详见抗震规范第 6.3.1。条的规定,最小值为 0.4%、最大值为 1.2%尚需根据具体情况进行调整。六十八、柱非加密区箍筋配置最低要求六十九、配箍量:不宜小于加密区的 50%。七 0、箍筋间距:抗震一、二级时不应大于 10 倍纵向钢筋直径,抗震三级时不应大于 15 倍纵向钢筋直径。筋的计算值,此时计算剪力已考虑柱端的“强剪弱弯”放大系数,构造配箍时,可按上述构造要

22、求配箍,当柱端箍筋为计算配置时,上述的构造要求。七十二、柱的中段配箍要求七十三、当柱端为构造配箍时,可按非加密区的箍筋配置最低要求对柱的中段进行配箍,一般箍筋直径和肢数不变,箍筋间距可加大一倍七十四、当柱端为计算配箍时,柱高全长均应按端部配箍。只有抗震一二级时中段配筋方可适当减少(抗震一级可减少 30%,二级可减少 20%)。对底层柱宜为端部配筋的 50%60%七五、当按 HPB235 钢筋计算,而实际采用 HRB335 钢筋配箍时,箍筋用七一电算时柱箍筋的间距按柱端加密区箍筋间距输入,所得计算结果亦为柱端箍故当柱端箍筋计算值小于必须按计算配足,且满足量可减少 15%。七十六、梁的箍筋直径不宜

23、大于 16mm,可增加箍筋肢数或减小箍筋间距来减小其直径。七十七、节点核心区的配箍要求七十八、箍筋的最大间距、最小直径和肢距同柱端加密区的要求。七十九、体积配箍率:当柱轴压比 A0.4 时,抗震一级宜 A1。0%二级宜 A0.8%,三四级宜 R0.6%,当柱轴压比 V0.4 时,分别为 0.8%、0.6%、0.4%。八 0、框支柱和净高与截面高度之比小于 4 的短柱(包括嵌砌填充墙形成的短柱),其体积配箍率宜 R1.0%,沿柱全高范围内箍筋的间距均不应大于 100mm.八一、剪力墙的配筋(一)竖向和横向分布钢筋1.分布钢筋的布置(1)框剪结构中的剪力墙,分布钢筋应采用双排布置,横筋在外、竖筋在

24、内。(2)剪力墙结构中的剪力墙分布钢筋,除抗震三、四级的一般部位且墙厚 v160mm 寸可采用单排布置外,其他情况均应或宜采用双排布置。2.分布钢筋的最小直径为。8。3.分布钢筋的最大间距为 300mmr 般不宜大于 250mm.4.分布钢筋的最小配筋率(1)框剪结构中的剪力墙,分布钢筋的配筋率均不应小于 0.25%。这里所谓的分布钢筋配筋率, 是指在钢筋间距范围内两根竖向或水平分布钢筋的截面面积与混凝土的截面面积之比。(2)剪力墙结构中的剪力墙分布钢筋的最小配筋率:抗震等级为一级时,均为 0.25%;二级时,加强部位为 0.25%、一般部位为 0.20%;三级时,加强部位为 0.20%、一般

25、部位为 0.15%;(但IV 类场地为 0.20%);四级时,加强部位为 0.20%、一般部位为 0.15%。5.水平分布钢筋的配筋率大于 1.2%时,宜调整剪力墙的刚度,以减小该剪力墙所分配的剪力。剪力墙边缘构件的配筋1 .剪力墙的边缘构件分为翼墙、边框柱、暗柱和不设暗柱四种类型。其中,前三种类型适用于抗震一、二级的剪力墙和抗震三级剪力墙的加强部位;其他情况下和墙宽度小于墙厚度4 倍的小墙肢可采用第四种类型(即不设暗柱)。2 .边缘构件的最低配筋要求(1)底部加强部位墙端纵向(竖向)最小配筋:抗震一级为 0.015AC,二级为 0.012AC,三级为 0.005AC和 2()14 的较大值,

26、四级为 2()12。(2)底部加强部位墙端箍筋或拉筋的最小配筋:抗震一级为。8100 二级为。8150 三四级为。6150(3)其他部位墙端纵向(竖向)最小配筋:抗震一级为 0.012AC,二级取 0.010AC 和 4。12的较大值,三级取 0.005AC 和 2 巾 14 的较大值,四级为 2。12。(4)其他部位墙端箍筋或拉筋的最小配筋:抗震一级为。8150=级为。8200 三四级为()62003 .边框柱的配筋(1)如果边框柱截面尺寸大于墙厚的三倍、且在计算中按框架柱单独处理时,其配筋氨计算结果进行,并应符合框架柱配筋的构造要求。(2)当剪力墙在门洞边形成独立端柱时,端柱全高的箍筋宜符

27、合框架柱箍筋加密区的构造要求。(3)框剪结构中剪力墙全高范围内的端柱箍筋,均应按上述底部加强部位墙端箍筋的要求设置。(4)其他情况下与剪力墙相连的边框柱,可将计算所得的剪力墙端部钢筋全部配在柱内。竹内纵向钢筋除应满足上述边缘构件的最低配筋要求外,尚应满足框架柱的构造配筋要求;柱内箍筋的直径和间距,按上述边缘构件的最低配筋要求设置即可。八十二、L 形、T 形和十字形剪力墙配筋当采用三维空间分析程序计算时,任何形状的剪力墙都是划分为若干墙段来分别计算其内力和配筋,计算所得到的墙端部钢筋面积 As 是指该墙段一端全部竖向钢筋截面面积之和。这对一字形剪力墙处理很方便,如计算值大于构造值,应按计算值将竖筋全部配置在边缘构件内即可,否则按构造配置。但对 L 形、T 形和十字形剪力墙,配筋时要进行处理,处理办法如下:八十三、在墙端相交处,按计算所得的端部竖向钢筋集中配置在墙端相交的暗柱内,其数量为各墙段端部竖向钢筋之和;八十四、如墙段相交处的暗柱配筋过多时-,可先在暗柱内按构造要求配置,多余的竖向钢筋再

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论