




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、土木工程毕业设计方案挡土墙显然,所得的稳定坡角较小,与实际条件中约为60度的边坡相距甚大,因此该土坡是不稳定的,为了得到一个稳定的土坡,若不采取挡墙支护,则需要放缓坡,而实际的工程地质条件给定的坡高较高,放缓坡所需要的挖方量巨大,明显不经济,所以放缓坡不合适,必须采取挡墙支护。2. 2重力式挡土墙的设计重力式挡土墙是以墙身自重来维持挡土墙在土压力作用下的稳定,它是我国目前最常用的一种挡土墙形式。重力式挡土墙多用浆砌片石砌筑,缺乏石料地区有时可用混凝土预制块作为砌体,也可直接用混凝土浇筑,一般不配钢筋,或只在局部范围配置少量钢筋,这种挡土墙形式简单,施工方便,可就地取材,适用性强,因而应用广泛。
2、由已知设计资料和工程地质条件,所设的重力式挡土墙墙高9米,顶宽1米,底宽5米,选择浆砌块石砌筑,墙背垂直,如图2T所示。图2-1重力式挡土墙的截面尺寸图2.2.1土压力计算(1.04-5.0)x9x24墙体自重W=y=648KN/z根据拟建挡土墙的条件浆砌块石,查得墙背摩擦角为(1/31/2",此处取12。,墙后填土倾斜,0=25,°=31。,£=0则查表可知主动土压力系数Ka=0.46,墙后填土选择为黄土,容重为13.615.7kN/nP,取为14.2kN/m5o所以E.=/2yH=xl4.2x92x0.46=264.5S/m土压力的竖向分力:Eay=Eaxsi
3、n(+)=90.5kN/m土压力的水平分力:Eax=Eaxcos(5+£)=248.5AN/m2.2.2抗滑移稳定性验算(5,也=(648+90.5)x0.5=挪安'Eg248.52.2.3抗倾覆稳定性验算求出作用在挡土墙上诸力对墙趾0点的力臂:自重W的力臂:将挡墙的截面分为一个矩形和一个三角形分别计算自重:G=x4x9x24=432RN/z12G?=lx9x24=216AN/加如图所示,得各自力臂:x=x4=2.67?x,=4+xl=4.577?-2Eay的力臂:b=5.OmEax的力臂:h=3.Om应用公式可得抗倾覆稳定安全系数:qx玉+G?xX?+EayxbKt=诺K4
4、32x2.67+216x4.5+90.5x5.0_248.5x3.0=3.46>1.5(安全)2.2.4地基承载力验算 作用在基础底面上总的竖向力:N=W+Eay=648+90.5=738.5KN/m 合力作用点与墙前趾0点的距离:Gix+G2x2+Eayxb-Eaxxhx=:=2.48/nN 偏心距:e=-x=0.02<-=Q.S3m26 基底边缘力:maxNZ1,6e、r218.56®PminKtBLow® 要求满足下列公式:f(Pmax+Pmin)=213.44®由于基底为碎石土,密实状态下,基底的承载力f=800kPa.所以;(/标x+PG=2
5、13.44/也<f=800kPaPmax=218.56刷<1.2/=960刷基底平均应力及最大压力均满足要求。最终确定挡土墙的尺寸:顶宽1.Om,底宽5.0mo2. 3扶壁式挡土墙的设计扶壁式挡土墙的设计内容主要包括墙身构造设计、墙身截面尺寸的拟定,墙身稳定性和基底应力及合力偏心距验算、墙身配筋设计和裂缝开展宽度等。2.3.1墙身构造设计扶壁式挡土墙墙高不宜超过15m,一般在910n)左右,段长度不宜大于20m,扶肋间距应根据经济性要求确定,一般为1/4-1/2墙高,每段中宜设置三个或三个以上的扶肋,扶肋厚度一般为扶肋间距的1/101/4,但不应该小于0.3mo采用随高度逐渐向后加
6、厚的变截面,也可以采用等厚式,以便于施工。墙面板宽度和墙底板的厚度与扶肋间距成正比,墙面板顶宽不得小于0.2皿可采用等厚的垂直面板。墙踵板宽一般为墙高的1/41/2,且不小于0.5mo墙趾板宽宜为墙高的1/20-1/5,墙底板板端厚度不小于0.3mo如图2-1所小。2.3.2截面尺寸拟定根据建筑边坡工程技术规范及工程地质条件,此扶壁式挡土墙墙高拟定为H=10m,分段长度为20m,扶肋间距L=4m,扶肋宽度0.6m。墙面板顶宽b=300m,为了利于施工,采用等厚垂直面板,墙底板板端厚度0.4m,墙踵板宽度Bl=lmo2000o.41LLa)b)图2-1扶壁式挡土墙构造(单位cm)a)平面图;b)
7、横断面图2.3.3土压力的计算yy图2-2主动土压力计算图其中$=890=31,w=(p*5o如图2所示,扶壁式挡土墙墙背垂直,BC为开挖后的土坡坡面,作为第一破裂面,BC与垂直方向的夹角为25度,ADBC即为破裂棱体。这个棱体作用着三个力,即破裂棱体的自重W,主动土压力的反力Ea,破裂面的反力Ro其中Ea的方向与墙背成$角,由工程地质条件所给得5=8。,且偏于阻止棱体下滑的方向。R的方向与破裂面法线成依角,同样偏于阻止棱体下滑的方向。由于棱体处于平衡状态,因此力的三角形闭合。从力的三角形中可得:曲顷cos(E)sin(e+”)式中”=0+$=31+8=39根据前面计算得的稳定坡角,此处的挡墙
8、后填土坡度拟定为25度,填土的重度为I4.2S/",则:Sadbc=1/2(。+人)x。+1/2AExACeos25°其中。=3+9.6xfg25=7.48m,h-9.6mAE=b,AC=S.5m所以,算得Saz*=67.7。主动土压力反力岛=Wcos(25:+31°)=597.76炯/m。土矶工成刀风刀Sin(25°+39°)°2.3.4墙面板设计计算1.计算模型与计算荷载墙面板计算通常取扶肋中到扶肋中或跨中到跨中的一段为计算单元,视为固支于扶肋及墙踵板上的三向固支板,属于超静定结构,一般作简化近似计算。计算时,将其沿墙高或墙长划分
9、为若干单位宽度的水平板条与竖向板条,假设每一个单位条上作用均布荷载,其大小为该条单位位置处的平均值,近似按支承于扶肋的连续板来计算水平板条的弯矩和剪力,按固支于墙底板上的刚架梁来计算竖向板条的弯矩。墙面板的荷载仅考虑墙后主动土压力的水平分力,而墙自重、土压力竖向分力及被动土压力等均不考虑。其中土压应力为:ehk=Ea/H=597.76/9.6=62.26W/m2图2-3墙面板简化土应压力图(ypi=0.5.x4hi/H=l2.97A.(0<W<Hl/4)f=0.5。城=31.13(H/4<hi<3H/4)%=°5%x4(9.6-4加)/Hl=12.97(9.6
10、-加)(3/4/71</zz</71)2.水平内力根据墙面板计算模型,水平内力计算简图如图2-4所示。各内力分别为:支点负弯矩:Ml=-l/12o-/w.Z2=-1/12x31.13x4.02=-55)WV/7i支点剪力:Q="2=62.26kN跨中正弯矩:M2=/20"=1/20x31.13x4.02=33kNm边跨自由端弯矩:M3=0naVrp'I1rja叩rja叩f|AVi'11AATl1''l1naVrp'I1rja叩rja叩f|AVi'11AATl1''l1a)其中,/为扶肋间净距。b)1
11、/121/121/12M./KUZ1/201/20c)图2-4墙面板的水平内力计算a)计算模型;b)荷载的作用图;c)设计弯矩图。墙面板承受的最大水平正弯矩及最大水平负弯矩在竖直方向上分别发生在扶肋跨中的1/2H1处和扶肋固支处的第三个H1/4处,如图2-5所示。设计采用的弯矩值和实际弯矩值相比是安全的,如图4-c)所示。例如,对于固端梁而言,当它承受均布荷载时,其跨中弯矩应为匕/24,但是,考虑到墙面板虽然按连续梁计算,然而它们的固支程度并不充分,为安全起见,故设计值按式=确定。3. 竖直弯矩墙面板在土压力的作用下,除了上述的水平弯矩外,将同时产生沿墙高方向的竖直弯矩。其扶肋跨中的竖直弯矩沿
12、墙高的分布如图5所示。负弯矩出现在墙杯一侧底部H1/4范围内,正弯矩出现在墙面一侧,最大值在第三个H1/4段内,其最大值可近似按下列公式计算:竖直负弯矩:虬)=-0:=-0.03x62.26x9.6x4=-71,72kNm图2-5墙面板跨中及扶肋处的弯矩图a)跨中弯矩b)扶肋处弯矩竖直正弯矩:M=0.03x77I/4=17.93jtTVm沿墙长方向(纵向),竖直弯矩的分布如图6所示,呈抛物线形分布。设计时,可采用中部21/3范围内的竖直弯矩不变,两端各1/6范围内的竖直弯矩较跨中减少一半的阶梯形分布。第一章绪论1.1毕业设计的目的和意义毕业设计(论文)是教学计划最后一个重要的教学环节,是培养学
13、生综合应用所学的土木工程基础理论、基本理论和基本技能,进行工程设计或科学研究的综合训练,是前面各个教学环节的继续、深化和拓展,是培养我们综合素质和工程实践能力的重要阶段。毕业设计是在学完培养计划所规定的基础课、技术基础课及各类必修和选修专业课程之后,较为集中和专一地培养我们综合运用所学基础理论、基本理论和基本技能,分析和解决实际问题的能力。和以往的理论教学不同,毕业设计要求我们在教师指导下,独立地、系统地完成一个工程设计,以及能掌握一个工程设计的全过程,学会考虑问题,分析问题和解决问题,并可以继续学习到一些新的专业知识,有所创新。1.2毕业设计课题挡土墙的概述公路挡土墙是用来支承路基填土或山坡
14、土体,防止填土或土体变形失稳的一种构造物。在路基工程中,挡土墙可用以稳定路堤和路堑边坡,减少土石方工程量和占地面积,防止水流冲刷路基,并经常用于整治坍方、滑坡等路基病害。在山区公路中,挡土墙的应用更为广泛。路基在遇到下列情况时可考虑修建挡土墙:图2-6墙面板竖直弯矩图a)竖直弯矩沿墙高分布;b)竖直弯矩沿墙纵向分布4. 扶肋外悬臂长度1'的确定扶肋外外悬臂节长r,可按悬臂梁的固端弯矩与设计用弯矩相等求得,即:M=/naf,l3.5墙踵板设计计算1. 计算模型和计算荷载墙踵板可视为支承于扶肋上的连续板,不计墙面板对它的约束,而视其为皎支。内力计算时,可将墙踵板顺墙长方向划分为若干单位宽度
15、的水平板条,根据作用于墙踵板上的荷载,对每一个连续板条进行弯矩,=/2apil2/=0.41/=1.64m剪力计算,并假定竖向荷载在每一连续板条上的最大值均匀作用在板条±o作用在墙踵板上的力有:计算墙背间与实际墙背的土重W1;墙踵板自重W2;作用在墙踵板顶面上的土压力竖向分力W3;作用在墙踵板端部的土压力竖向分力W4;由墙趾板固端弯矩Ml的作用在墙踵板上引起的等代荷载W5;以及地基反力等,如图所示。为了简化计算,假设W3为中心荷载,W4是悬臂端荷载Ety所引起的,实际应力呈虚线表示二次抛物线分布,简化为实线表示的三角形分布;Ml引起的等代荷载的竖向应力近似地假设成图7所示的抛物线形,
16、其重心位于距固支端5/8B3处,以其对固支端的力矩与Ml相平衡,可得墙踵处的应力b心=2.4M1/禺。将上述荷载在墙踵板上的引起的竖向应力叠加,即可得到墙踵板的计算荷载。由于墙面板对墙踵板的支撑约束作用,在墙踵板与墙面板的衔接处,墙踵板沿墙长方向板条的弯矩为零,并向墙踵方向变形逐渐增大。故可近似假设沿墙踵板的计算荷载为三角形分布,最大值在踵点处。如图2-7所示。各部分应力计算:+用建历=14.2x(9.6+3x25)=156.18(tW2=yht3=24x0.4=9.6kN知=零,其中DJEH3是作用在BC面上的土压力,所以H=9.6+1.5X圾25。=10.3z。虬=cosrCos奸伯室买=
17、0.487COSP+Jcos?P一cos2(P所以,EB3=-yH2Ka=-X14.2x1O.32x0.487=366.833/m弭、jb-33弭、jb-33M=Ne0=688.06x(-|)=447.24nP366.83xsin25所以,一=51.68WoJ3.0%=竺严,其中E,是作用在CD表面上的土压力,所以H=10+3x7g25=114同样的虬=0.487所以,Et=-/72A:n=-xl4.2xl1.42x0.487=449.36伽/tn22所以,*l£-2x449.36xsin25*6kNBy3.0墙踵板固端处的计算弯矩MLB2B工州=土3。-(-/)(时2上)-(。|-
18、。2);,其中OoaNMm,nWN=688.06伽A=1x(1+0.3+3)=4.3m2W=-ab2=-xx4.32=3.08m2所以66即cr,=305.2如=14.8*求得M=139.185姑切b“5=2.4X竺=2.4X"985=37,kPaB;32所以b”,=crlvI+b“,3+b“4+b*5-(t2=156.18+9.6+51.68+126.6+37.1-14.8=366.36啊图2-7墙踵板计算荷载图式a)墙踵板受力图;b)f对墙踵板的作用;c)%对墙踵板的作用;d)M1对墙踵板的作用;e)墙踵板法向应力总和上述中:Eb3作用在BC面上的土压力(kN);E,作用在CD面
19、上的土压力(kN);Ml一一墙趾板固端处的计算弯矩(kNm);“墙后填土和钢筋混凝土的容重(Kn/m);一一墙踵板厚度(m);%墙踵板端处的地基反力(kPa)。2. 纵向内力墙踵板顺墙长方向板条的弯矩和剪力计算与墙面板相同,各内力分别为:支点负弯矩:M(=-cru./2=-319.68Wm12支点剪力:。=叫/2=479.52加跨中正弯矩:M2=(t/2=191.80/77°20边跨自由端弯矩:3. 横向弯矩墙踵板沿墙长方向(横向)的弯矩由两部分组成:(1)在图7-e所示的三角形分布荷载作用下产生的横向弯矩最大值出现在墙踵板的根部。由于墙踵板的宽度通常只有墙高的1/3左右,其值一般较
20、小,对墙踵板横向配筋不起控制作用,故不必计算此横向弯矩。(2)由于在荷载作用下墙面板与墙踵板有相反方向的移动趋势,即在墙踵板根部产生与墙面板的竖直弯矩纵向分布的相同。如图2-6-b)所ZjsO2.3.6扶肋设计计算1.计算模型与计算荷载LwLwb)图2-8扶肋计算图式c)扶肋可视为锚固在墙踵板上的T形变截面悬臂梁,墙面板则作为该T形梁的翼缘板,如图2-8-a)所示,翼缘板的有效计算宽度由墙顶向下逐渐加宽,如图2-8-a),b)所示,为了简化计算,只考虑墙背主动土压力的水平分力,而扶肋和墙面板的自重以及土压力的竖向分力忽略不计。2.剪力和弯矩悬臂梁承受两相邻的跨中至跨中长度lw与墙面板高H1范围
21、内的土压力。在土压力E川中,作用在AB面上的土压力的水平分力作用下,产生的剪力和弯矩为:Qhi=冲。(0.5+hKacos(3Mg=7+3"o)K“cospo当hi=时的Qm和M心QHi=rHxLwxO,5HxKacos25°=14.2x9.6x4.6x0.5x9.6x0.487xcos25=1328.50WVM,yi=lZ/7Xx/Ixcos256=xl4.2x9.63.7容许应力验算扶壁式挡土墙的验算内容包括抗滑移稳定性,抗倾覆稳定性,基底应力及合力偏心距的验算。其验算方法与重力式挡土墙相同。=xl4.2x9.63.7容许应力验算扶壁式挡土墙的验算内容包括抗滑移稳定性,
22、抗倾覆稳定性,基底应力及合力偏心距的验算。其验算方法与重力式挡土墙相同。x4.6x9.6x0.487xcos256=4251.22伽.?如图所示,计算长度Lw,按下式计算,且人</?+12B2o匕=/+人=4+0.6=4.6(中跨)Lw=0.91/+/?=0.91x4+0.6=4.24(悬臂跨)3SS占cixi翼缘宽度扶肋的受压区有效翼缘宽度bi,墙顶部bi=b,底部bl=Lw,中间为直线变化,如图9所示,艮岛b.b+妇。%(1)抗滑移稳定性验算挡土墙的抗滑移稳定性是指在土压力和其他的荷载作用下,基底摩阻力抵抗挡土墙滑移的能力,用抗滑移稳定系数表示,即作用于挡土墙的抗滑力与实际下滑力之比
23、。K=5”)CEg其中G=0.3x9.6x24+4.3x0.4x24+3xl0xl4.2=536.4W。耳,=:/H?k,=?x14.2x9.62x0.45=294.45AN(查得Ka=0.45)以墙踵板的板端竖直面作为假想墙背,则:%=&xsin31°=151.66)WEg=&xcos31°=252.39#N所以0.5x(536.4+151.66)=136>130(查得基底摩擦系数为0.5)252.39故抗滑移稳定性满足要求。(2)抗倾覆稳定性验算挡土墙的抗倾覆稳定性是指它抵抗墙身绕墙趾向外转动倾覆的能力,用抗倾覆系数Ko表示,即对墙趾的稳定力矩之和
24、与倾覆力矩之和的比值。(算得土压力的水平分力的力臂h=3.0m)则,_03x9.6x24x1,15+4.3x0.4x24x2.154-3x10x14,2x2.8+151.66x4.3£吃一252.39x3.02002.81757.172002.81757.17=2.65>1.50所以满足抗倾覆稳定性的要求。(3)地基承载力及偏心距的验算为了保证挡土墙的基底应力不超过地基的容许承载力,应进行基底应力验算。为了使挡土墙墙形结构合理和避免发生不均匀的沉降,还应控制作用于挡土墙基底的合力偏心距。a.底面上的总竖向力N=W+Eax=536.4+151.66=688.06ANb.合力作用点
25、与墙前趾的距离2002.81-757.17,OIx=1.81?688.06C.偏心距43Be=-x=0.34<-=0.7226d.基底边缘应力e.要求满足下列公式闩萼)=籍齐土零)=流闩萼)=籍齐土零)=流kPa?(+%)=160妒<fk=SOOkPa查得在密实状态下,碎石土承载力标准值为700-900kPa,此处取h=800kPaoo-,=235.86<1.2./;=960kPa基底平均应力和最大压力均满足要求。所以,最初拟定的挡土墙截面尺寸即可作为实际挡土墙的尺寸。2.3.8配筋设计扶壁式挡土墙墙面板,墙趾板按矩形截面受弯构件配筋,而扶肋按变截面T形梁配筋。1. 墙面板墙
26、面板的水平受拉钢筋分为内外侧钢筋两种。(1)水平受力钢筋内侧水平受拉钢筋N2布置在墙面板靠填土一侧,承受水平负弯矩,以扶肋处支点弯矩设计计算,全墙可分为34段。a.以墙面板中间H1/2的弯矩作为控制进行计算。经算得M=-55KNM.选用材料:以HRB335钢筋作为受拉钢筋,混凝土的强度等级选用C20,查得fc=9.6N/mm2,fy=300N/mm2o钢筋保护层厚度C=30mm,估计选用钢筋直径为20mm。截面尺寸拟定为h=300mm,b取1米宽进行设计。则截面有效高度h0=h-c-d/2=260mm。将以上的数据代入基本公式:afcbx=fyAs算得:x=23mm算得:x=23mmAs=73
27、6"2查混凝土结构设计原理附表19得:选配40222004=804/wn2验算适用条件:x=23mm<g也=0.55x260=143mm(1) 陡坡地段;(2) 岩石风化的路堑边坡地段;(3) 为避免大量挖方及降低边坡高度的路堑地段;(4) 可能产生塌方、滑坡的不良地质地段;(5) 高填方地段;(6) 水流冲刷严重或长期受水浸泡的沿河路基地段;(7) 为节约用地、减少拆迁或少占农田的地段。在考虑挡土墙的设计方案时,应与其他方案进行技术经济比较。例如,采用路堤或路肩挡土墙时,常与栈桥或填方等进行方案比较;采用路堑或山坡挡土墙时,常与隧道、明洞或刷缓边坡等方案进行比较,以求工程技术
28、经济合理。1. 3挡土墙的类型及适用条件挡土墙类型的划分方法较多,一般以挡土墙的结构形式分类为主,常见的挡土墙形式有:重力式、衡重式、悬臂式、扶壁式、加筋土式、锚杆式和锚定板式。各类挡土墙的适用范围取决于墙址地形、工程地质、水文地质、建筑材料、墙的用途、施工方法、技术经济条件及当地的经济等因素。1.3.1重力式挡土墙重力式挡土墙一般由块石或混凝土材料砌筑。重力式挡土墙是靠墙身自重保证墙身稳定的,因此,墙身截面较大,适用于小型工程,通常A2()4就=而商=°3%>=°.2%验算满足要求。b.以墙面板顶H1/8处作为控制面进行计算,此时M=27.5KN/m.代入基本公式得
29、:lx9.6xl000xx=300427.5x!06=1x9.6x1000xx(260-1)求得:x=11.24mmA=360mm2同样查得,选用40>14250,4=615而。验算满足适用条件。由以上的计算可知,墙面板内侧的受拉钢筋分布为:墙顶H1/8,墙底H1/8范围内选配中14的钢筋,间距为250mm;墙面板中间的范围选配(D22的钢筋,间距为250mm。外侧受拉钢筋N3布置在中间跨墙面板临空一侧,承受水平正弯矩,该钢筋沿墙长方向通长布置。为方便施工,可在扶肋中心切断,沿墙高可分为几个区段进行配筋,但区段不宜分得太多。a.以墙面板的中间H1/2处作为控制面进行计算,此时M=33kN
30、m.同样代入基本公式得:1x9.6x1000x1=300&33xl06=lx9.6xl(XX)xx(260-)求得:x=15mm=480mm2o查表得:选配4014(3)250,4=615mm2o验算满足适用条件。b.以墙面板墙顶H1/8处作为控制面进行计算,此时M=16o5KNmo代入基本公式计算得:x=7mmAs=224mm2此时,p=0.08%<pm.n=0.2%,故需按最小配筋率进行配筋,即:bh。As=。/q)Qmin=520mm查得选配4014250,Av=615Wo验算满足适用条件。以上配筋计算可知,墙面板外侧水平受拉钢筋N2的分布为:全墙采用中14的钢筋,间距为2
31、50mm。(2)竖向受力钢筋内侧竖向收里钢筋N4布置在靠填土一侧,承受墙面板的竖直负弯矩,该筋向下伸入墙踵板不少于一个钢筋锚固长度,向上在距离墙踵板顶高H1/4处加上一个钢筋锚固长度处切断,每跨中部2L/3范围内按跨中的最大竖直负弯矩MD配筋,靠近扶肋两侧各L/6部分按MD/2配筋。a. 跨中2L/3范围内的弯矩M=71.72kNm,代入基本公式得:lx9.6xl(XX)xx=300xAyY71.72xl06=lx9.6xl(XX)xx(260-)求得:x=30m/nAs=960mm2查表得选配4018250,As=1017/z2o验算满足适用条件。b. 靠近扶肋两侧L/6部分的弯矩M=MD/
32、2=35.86kNmo同样代入基本公式求得:x=14.8切9As=473mm2o此时,p=-=0.18%<pmin=0.2%,故需按最小配筋率进行配筋,由以上可知,选配的钢筋为:4014(3)250,As=615/wm2o所以,由上可知,墙面板内侧竖向受力钢筋的分布为:每跨中部2L/3范围采用中18钢筋,间距为250mm;靠近扶肋两侧L/6范围内采用614钢筋,间距为250mm。外侧竖向受力钢筋N5布置在墙面板的临空一侧,承受墙面板的竖向正弯矩,该钢筋通长布置,兼作墙面板的分布钢筋用。由于正弯矩较小M=17.93kNm,由上面的计算可知,需按最小配筋率进行配筋,故墙外侧的钢筋布置为:全墙
33、布置中14钢筋,间距为250mm。(3) 墙面板与扶肋的U形拉筋连接墙面板与扶肋的U形拉筋N6,其开口向扶肋的背侧,该钢筋每一支承受高度为拉筋间距水平板条的支点剪力Q,在扶肋水平方向通长布置。由上面的计算可知,选配的U形钢筋为中14,承受拉力作用,每个扶肋上U形钢筋的个数为:N=9.6xl(XX)/3(X)=32根。2. 墙踵板墙踵板顶面横向水平钢筋N7,是为了墙面板承受竖直负弯矩的钢筋N4得以发挥作用而设置的.该钢筋位于墙踵板顶面,垂直于墙面板方向,其布置与钢筋N4相同,该钢筋一端插入墙面板一个钢筋锚固长度,另一端伸至墙踵端,作为墙踵板纵向钢筋N8的定位钢筋,如钢筋N7的间距很小,可以将其中
34、一半在距墙踵端减一个钢筋锚固长度处切断。墙踵板的顶面和底面纵向水平受拉钢筋N8,N9,承受墙踵板在扶肋两端的负弯矩和跨中正弯矩.该钢筋的切断情况与N2,N3相同。墙踵板的选用材料跟墙面板的相同,墙踵板厚度为0.4m,属于基础,所以混凝土保护层的厚度应大于70mm,此处取为C=80mm.估计选配的钢筋直径为20mm,所以截面有效高度玲=400-80-亨=310叽由前面的计算可知,墙踵板的支点负弯矩为M=-319.68kNm.带入基本公式得:lx9.6xl000xx=300Av319.68x1()6=lx9.6xl00()xx(31()-g)求得:jc=138,As=4416mm2.查表得选配82
35、8120,As=4926?己验算满足适用条件.跨中正弯矩M=191.8kNm,同样可得:x=73",As=2336mm2查表得选配5025200,虫=2454"*,验算满足适用条件.连接墙踵板与扶肋之间的U形钢筋N10,其开口向上.可在距墙踵板顶面一个钢筋锚固长度处切断,也可延至扶肋的顶面,作为扶肋两侧的分布钢筋,在垂直于墙面板方向的钢筋分布与墙踵板顶面纵向水平钢筋N8相同.3. 墙趾板墙趾板的受力筋N1设置于墙趾板的底面,为了方便施工,将墙面板第33页共37页外侧竖向受力筋N5弯曲作为墙趾板的受力筋.4. 扶肋扶肋背侧的受拉筋Nil,应根据扶肋的弯矩图,选择2-3个截面,
36、分别计算所需的拉筋根数.为了节省混凝土,钢筋Nil可以多层排列,但不得多于3层,其间距应满足规范要求,必要时可采用束筋,各层钢筋上端应按不需此钢筋的截面再延长一个钢筋锚固长度,必要时可将钢筋沿横向弯入墙踵板的底面.除受力钢筋之外,还需要根据截面剪力配置箍筋,并按构造要求布置构造钢筋.2. 4施工设计方案比选为了使支挡结构的设计更加节约经济,科学合理,对前面的两种挡土墙设计所得进行分析比较,选择一种造价、工程量、施工工艺更为合理的方案作为施工设计。由上设计计算所得可知,重力式挡土墙的截面尺寸为顶宽1米,底宽5米,高9米,所使用的混凝土强度等级为C20,估算材料用量可知,重力式挡土墙横向没延米所需
37、的混凝土用量为27平米。由于该挡墙的尺寸较大,施工架设模板难度较大。扶壁式挡土墙的截面尺寸为:墙面板高9.6米,厚度0.3米,墙底板宽4.3米,厚度0.4米,扶肋高9.6米,厚度0.6米,底宽3米。估算材料用量得每延米的混凝土用量为8.6平米,使用HRB335级钢筋。显然,重力式挡土墙所需的混凝土用量比扶壁式的大得多,因此所花费的造价也要高,而且工程量巨大,施工难度高。一般情况下,坡高大于8米时不选择采用重力式挡土墙作为支挡结构。以上分析看出,该地段不宜采用重力式挡墙支护,而采用扶壁式挡墙支护,总体造价不高,经济合理,又符合墙高要求。故此工程采用扶壁式挡土墙作为施工组织设计方案。2.5扶壁式挡
38、墙结构加固措施在选择了扶壁式挡土墙作为施工方案设计,完成了挡土墙截面设计及稳定、强度验算之后,必须采取必要的措施,以保证挡土墙的安全性。2.5.1基底拓展为减少基底压应力,增加抗倾覆的稳定性,在墙趾处伸出一台阶,以拓宽基底,墙趾台阶宽度为25mm,台阶高宽比为3:2。2.5.2排水设计挡土墙排水措施的作用在于疏干墙后土体和防止地表水下渗,以免墙后积水形成静压力。良好的排水在寒冷地区可以减小回填土的冻胀压力。排水措施主要包括(1) 截水沟。截水沟又称天沟,设置在挖方路基边坡挡土墙坡顶以外,用以拦截并排除在山坡上流淌的地面径流,减轻边沟的水流负担,保证挖方边坡不受流水冲刷,截水沟采用梯形截面,内边
39、坡的坡度为1:1,采用25cm厚的5号浆砌片石加固,并设置15cm厚的砂砾垫层。(2) 泄水孔。若已渗入墙后填土中的水,则应将其迅速排出,通常在挡土墙的下部设置泄水孔。一般泄水孔的直径为5-10cm,间距2-3cm,泄水孔应高于墙前水位,以免倒灌。此外,在泄水孔入口附近应用易渗的粗颗粒材料做反滤层,并在泄水孔入口下方铺设粘土夯实层,防止积水渗入地基不利于墙的稳定性。泄水孔的布置应错开呈梅花桩式,以免在某一个面上形成软弱层,影响挡土墙的稳定性。(3) 排水沟。主要用途在于引水,将路基范围内的各种水源水流引至桥涵或路基范围内的指定地点。采用梯形截面,25cm厚5号浆砌片石加固,并设15cm厚砂砾垫
40、层。2.5.3沉降缝和伸缩缝的设置:为避免地基不均匀沉降引起墙身开裂,需按墙高和地基性质的变异,设置沉降缝,同时,为了减少与工砌体因收缩硬化和温度化作用而产生裂缝,需设置伸缩缝。挡土墙的沉降缝和伸缩缝设置在一起,每隔10m设置一道,缝宽3cm,自墙顶做至基底,缝内宜用沥青麻絮、沥青竹绒或涂以沥青的木板等具有弹性材料,沿墙的内、夕卜、顶三侧填塞,填塞的深度为20cm.第三章毕业设计心得公路挡土墙是路基防护工程的重要组成部分。在山区公路中,挡土墙的应用更为广泛。挡土墙设计时,应进行详细地调查、勘测,确定构造物的形式与尺寸,运用合适的理论计算土压力,并进行稳定性和截面强度方面的验算,采取合理、可行的
41、措施,以保证挡土墙的安全性。扶壁式挡土墙结构是在重力式挡土墙的基础上因地制宜发展而来的,实际工程中,可采取联合的结构形式,其计算方法基本相同。对于多地震带的地区,只要在地基应力允许的条件下,应尽量扩大抗滑计算值。墙高小于8米,但结构简单,施工方便,能就地取材,因此广泛应用于实际工程中。1.3.2悬臂式挡土墙当地基土质较差或缺少石料而墙又较高时,通常采用悬臂式挡土墙,一般设计成L型,由钢筋混凝土建造,墙的稳定性主要依靠墙踵悬臂以上土重来维持。墙体内设置钢筋以承受拉应力,故墙身截面较小。1.3.3扶壁式挡土墙由墙面板、墙趾板、墙踵板和扶肋组成,即沿悬臂式挡土墙的墙长方向,每隔一定距离增设一道扶肋,
42、把墙面板和墙踵板连接起来。适用于缺乏石料的地区或地基承载力较差的地段。当墙高较高时,比悬臂式挡土墙更为经济。1.3.4锚定板及锚杆式挡土墙锚定板挡土墙是由预制的钢筋混凝土立柱、墙面、钢拉杆和埋置在填土中的锚定板在现场拼装而成,依靠填土与结构的相互作用力维持其自身稳定。与重力式挡土墙相比,具有结构轻、柔性大、工程量少、造价低、施工方便等优点,特别适合用于地基承载力不大的地区。设计时,为了维持锚定板挡土墙结构的内力平衡,必须保证锚定板结构周围的整体稳定和土的摩阻力大于由土自重和荷载产生的土压力。锚杆式挡土墙是利用嵌入坚实岩层的灌浆锚杆作为拉杆的一种挡土结构。1.3.5加筋土挡土墙由墙面板、拉筋和填土三部分组成,借助于拉筋于填土间的摩擦作用,把土的侧压力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育规划课题申报书《基于核心素养的地理实践性作业设计研究》
- 2024年乐山师范学院招聘工作人员考试真题
- 2024年湖南省长沙歌舞剧院招聘考试真题
- 2025年塑料助剂:润滑剂合作协议书
- 桥梁维修雨季施工应急措施
- 2025公司及项目部安全培训考试试题含答案(完整版)
- 2024-2025公司、项目部、各个班组安全培训考试试题及答案(基础+提升)
- 2024-2025工厂职工安全培训考试试题含答案【夺分金卷】
- 2024-2025安全管理人员安全培训考试试题及参考答案【培优】
- 2025年苏教版五年级数学实践活动计划
- 大单元教学设计说课稿《7.3 万有引力理论的成就》
- 工程项目部质量管理“四个责任体系”实施细则
- 资助感恩教育主题班会ppt课件(图文)
- 2023年新改版教科版科学三年级下册活动手册参考答案(word可编辑)
- 消防重点单位档案十八张表格doc-消防安全重点单位档案
- 多模态视域下北京市核心区语言景观研究
- 《单轴面筋脱水机设计报告(论文)》
- 内分泌系统 肾上腺 (人体解剖生理学课件)
- YY 9706.240-2021医用电气设备第2-40部分:肌电及诱发反应设备的基本安全和基本性能专用要求
- GPS静态数据观测记录表
- GB/T 1094.7-2008电力变压器第7部分:油浸式电力变压器负载导则
评论
0/150
提交评论