简单的线性规划问题附答案)_第1页
简单的线性规划问题附答案)_第2页
简单的线性规划问题附答案)_第3页
简单的线性规划问题附答案)_第4页
简单的线性规划问题附答案)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、简单的线性规划问题学习目标1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.了知识梳理自主学习知识点一线性规划中的基本概念名称意义约束条件关于变量x,y的一次不等式(组)线性约束条件关于x,y的一次不等式(组)目标函数欲求最大值或最小值的关于变量x,y的函数解析式线性目标函数关于变量x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域由所有一行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题知识点二线性规划问题1 .目标函数的

2、最值线性目标函数z=ax+by(bw0)对应的斜截式直线方程是y=,*+东在y轴上的截距是东当z变化时,方程表示一组互相平行的直线.当b>0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b<0,截距最大时,z取得最小值,截距最小时,z取得最大值.2 .解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表

3、示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1 .线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?产品安排问题例如,某工厂生产甲、乙两种

4、产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2 .解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.了题型探究

5、重点突破题型一求线性目标函数的最值y<2,例1已知变量x,y满足约束条件,x+yR1,则z=3x+y的最大值为()ixyw1,A.12B.11C.3D.1答案B解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=3x+z经|y=2,x=3,过点A时,z取得最大值.由?f此日z=3x+y=11.|xy=1y=2,跟踪训练1若z = y ax取得最大值的最优解不唯一 ,+y-2”(1)x,y满足约束条件ix-2y-2<0!.2x-y+2>0则实数a的值为()1 1A.2或一1B.2或

6、2C.2或1D.2或1"x-y+1<0,(2)若变量x,y满足约束条件";x+2y-8<0,则z=3x+y的最小值为lx>0,答案(1)D(2)1解析(1)如图,由y=ax+z知z的几何意义是直线在y轴上的截距,故当a>0时,要使z=yax取得最大值的最优解不唯一,则a=2;当a<0时,要使z=yax取得最大值的最优解不唯一,则a=-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z=3x+y,即y=3x+z过点(0,1)时z取最小值1.题型二非线性目标函数的最值问题xy2w0,例2设实数x,y满足约束条件qx+2y-4>0

7、,求,2y-3<0,x2+y2的最小值;解如图,画出不等式组表示的平面区域ABC,加!令u=x2+y;其几何意义是可行域 ABC内任一点(x, y)与原点的距离的平方.x+ 2y 4=0,过原点向直线x+ 2y 4 = 0作垂线y=2x,则垂足为y= 2x的解,即备8),x+ 2y-4=0,又由“2y-3=0,OC|=所以垂足在线段AC的延长线上,故可行域内的点到原点的距离的最小值为_,13=2,所以,x2+y2的最小值为13.(2)令v=y,其几何意义是可行域ABC内任一点(x,y)与原点相连的直线l的斜率为v,即vy0=.由图形可知,当直线l经过可行域内点C时,v最大,x-0由(i)

8、知c(1,2),所以vmax=3所以y的最大值为2.x>0,跟踪训练2已知x,y满足约束条件y>0,则(x+3)2+y2的最小值为展十户1,答案10解析画出可行域(如图所示).(x+3)2+y2即点A(3,0)与可行域内点(x,y)之间距离的平方.显然AC长度最小,AC2=(0+3)2+(10)2=10,即(x+3)2+y2的最小值为10.题型三线性规划的实际应用例3某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每

9、天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?xx+2y<12,2x+y<12,解设每天分别生产甲产品x桶,乙产品y桶,相应的利润为z元,于是有x>0,y>0,xCN,yCN,z=300x+400y,在坐标平面内Hl出该不等式组表示的平面区域及直线300x+400y=0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y轴上的截距达到最大,此时z=300x+400y取得最大值,最大值是z=300X4+400X4=2800,即该公司可获得的最大利润是2800元.反思与感悟线性规划解决实际

10、问题的步骤:分析并根据已知数据列出表格;确定线性约束条件;确定线性目标函数;画出可行域;利用线性目标函数(直线)求出最优解;实际问题需要整数解时,应适当调整,以确定最优解.希望使桌子和椅子的总问桌子、椅子各买多少跟踪训练3预算用2000元购买单价为50元的桌子和20元的椅子,数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,才行?解设桌子、椅子分别买x张、y把,目标函数z=x+v,把所给的条件表示成不等式组,即约束条件为50x+20y<2 000,y>x,yywi.5x,Ix>0,xCN*,'y>0,yCN*.50x+20y=2 000, 由fy=x

11、,解得200 x= 7 '200片彳,所以a点的坐标为ij-0,270/50x+20y=2000,x=25,由f解得775ly=i.5x,y="2",200T /752 /所以B点的坐标为25,75;所以满足条件的可行域是以a!270,0(0,0)为顶点的三角形区域(如图).由图形可知,目标函数z=x+y在可行域内的最优解为B”5,75但注意到xCN*,yCN*,x=25,故取y=37.故买桌子25张,椅子37把是最好的选择.向杳闫纲-当堂检测1.若直线y=2x上存在点(x, y)满足约束条件x+ y-3<0,$x 2y-3<0, x> m,则实数

12、m的最大值为(3A.-1B.1C.2D.2r5x-11y>-22,2x+3y>9,2.某公司招收男职员x名,女职员y名,x和y需满足约束条件<则z2x<11,LxCN*,yCN*,=10x+10y的最大值是()A.80B.85C.90D.95y<1,3.已知实数x,y满足ix<1,则z=x2+y2的最小值为母+y>1,匚谡时精练一、选择题则2x- y的最小值为()1.若点(x,y)位于曲线y=|x|与y=2所围成的封闭区域,A. 6B. - 2C. 0D. 22 .设变量x, y满足约束条件A. 4 B. 0x> 1 ,3 .实数x, y满足加&

13、gt;0, 星y > 0,A. -1,0C. -1, i )x-y>0,4.若满足条件,x+y2W0, ,y>ax> 1,ix+y-4< 0,则目标函数x 一 3y+ 4 w 0,4C.oD. 43则2=匕匚的取值范围是( xB. (8, 0D. -1,1)z=3x- y的最大值为()的整点(x, y)(整点是指横、纵坐标都是整数的点)恰有9则整数a的值为()A. - 3 B. - 2 C. 1D. 0目标函数z=2x+y的最大值为7,最小值为1,则b,B. - 1 , - 3D. - 1, -21,5 .已知x,y满足3x+y<4,、x+by+c<0

14、,的值分别为()A.-1,4C.-2,-1x+y>5,6 .已知x,y满足约束条件ix-y+5>0,使z=x+ay(a>0)取得最小值的最优解有无数个,“3,则a的值为()A.-3B.3C.1D.1二、填空题x<2,7 .若x,y满足约束条件4yW2,则2=x+2y的取值范围是.母+y>2,8 .已知1Wx+yW4且2WxyW3,则z=2x3y的取值范围是(答案用区间表示)0WxW庐9 .已知平面直角坐标系xOy上的区域D由不等式组(yW2,给定.若M(x,y)为D、xw2丫上的动点,点A的坐标为(W,1),则z=OMoA的最大值为.10.满足冈+|y|W2的点(

15、x,y)中整点(横纵坐标都是整数)有个.x-y+2>0,11,设实数x,y满足不等式组i2x-y-5<0,则z=|x+2y4的最大值为.、x+y-40,三、解答题x4y<3,12.已知x,y满足约束条件3x+5yW25,目标函数z=2x-y,求z的最大值和最小值.x>1,x+y-11>0,13,设不等式组i3x-y+3>0,表示的平面区域为D.若指数函数y=ax的图象上存在区域,5x-3y+9<0D上的点,求a的取值范围.14.某家具厂有方木料90m3,五合板600m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1m3,五合板2m2,生产

16、每个书橱需要方木料0.2m3,五合板1m2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?当堂检测答案1 .答案B解析如图,当y=2x经过且只经过x+y3=0和x=m的交点时,m取到最大值,此时,即(m,2m)在直线x+y3=0上,则m=1.2 .答案C.一.、,.-一.,,.一一*解析该不等式组表木的平面区域为如图所本的阴影部分.由于x,yeN,计算区域内与g,2,最近的点为(5,4),故当x=5,y=4时,z取得最大值为90.Sjc-l 1)+22-)J13.答案

17、2解析实数x,y满足的可行域如图中阴影部分所示,则z的最小值为原点到直线AB的距离的平方,故Zmin=课时精练答案、选择题1 .答案A解析画出可行域,如图所示,解得A(2,2),设z=2x-y,*一2.却oT1-2r,把z=2xy变形为y=2xz,则直线经过点A时z取得最小值;所以Zmin=2X(2)2=6,故选A.2 .答案D解析作出可行域,如图所示.x+y4=0,x=2,联立£解得x3y+4=0,y=2.当目标函数z=3xy移到(2,2)时,z=3x-y有最大值4.3 .答案D解析作出可行域,如图所示,y1的几何意义是点(x,y)与点(0,1)连线l的斜率,当直线l过B(1,0)

18、时ki最小,最小为一1.x又直线l不能与直线xy=0平行,.kivl.综上,kC1,1).4 .答案C解析-j-v=4>二、填空题7.答案2,6解析如图,作出可行域,作直线l: x+2y=0,tL .T-y+?1=()戈 “Tn解析 如图,作出可行域,作直线 l: x+ ay=0,要使目标函数 z= x+ay(a>0)取得最小值的 最优解有无数个,则将 l向右上方平移后与直线x+y=5重合,故a=1,选D.将l向右上方平移,过点 A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故z的取值范不等式组所表示的平面区域如图阴影部分所示,当a=0时,只有4个整点(1,1),(0

19、,0),(1,0),(2,0).当a=-1时,正好增加(一1,1),(0,1),(1,1),(2,1),(3,1)5个整点.故选C.5 .答案D解析由题意知,直线x+by+c=0经过直线2x+y=7与直线x+y=4的交点,且经过直线2x+y=1和直线x=1的交点,即经过点(3,1)和点(1,1),3+b+c=0,b=1,5 解得51b+c=0,c=2.6 .答案D围为2,6.8 .答案3,8解析作出不等式组1wx+yw4,1 表示的可行域,如图中阴影部分所示.2 wx一yw3在可行域内平移直线2x3y=0,当直线经过X-y=2与X+y=4的交点A(3,1)时,目标函数有最小值Zmin=2X33

20、X1=3;当直线经过x+y=1与xy=3的交点B(1,2)时,目标函数有最大值Zmax=2X1+3X2=8.所以zC3,8.9.答案4解析由线性约束条件p<x<啦,<yW2,画出可行域如图中阴影部分所示,目标函数z=oMOA=V2x+y,将其化为x<,2yy=亚x+z,结合图形可知,目标函数的图象过点(亚,2)时,z最大,将点巾,2)代入z10.答案13解析|x|+|y|W2可化为.x+yw2x>0,y>0jx-y<2(x>0,y<0x+yw2(x<0,y>0)L-x-y<2(xv0,y<0)作出可行域为如图正方形内

21、部(包括边界),C(3,1)容易得到整点个数为13个.11.答案21解析作出可行域(如图),即4ABC所围区域(包括边界),其顶点为A(1,3),B(7,9),方法一二可行域内的点都在直线x+2y4=0上方,-x+2y-4>0,则目标函数等价于z=x+2y4,易得当直线z=x+2y-4在点B(7,9)处,目标函数取得最大值zmax=21.方法二z=|x+2y4| =|x+2y-4|,5令P(x, y)为可行域内一动点,定直线x + 2y 4= 0,则z=45d,其中d为P(x,y)到直线x+2y4=0的距离.由图可知,区域内的点B与直线的距离最大,故d的最大值为|7+2X 9 4|21=5故目标函数Zmax=25,5=21.三、解答题12 .解z=2x-y可化为y=2xz,z的几何意义是直线在y轴上的截距的相反数,故当zlo :取得最大值和最小值时,应是直线在y轴上分别取得最小和最大截距的时候.作一组与2xy=0平行的直线系1,经上下平移,可得:当l移动到11,即经过点A(5,2)时,Zmax=2X52=8.当1移动到12,即过点C(1,4.4)时,CO.4. II.5.<+31-23Zmin=2X1-4.4=-2.4.13 .解先画出可行域,如图所示,y=ax必须过图中阴影部分或其边界.A(2,9),.-.9=a2,.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论