下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、韩山师范学院2011年专升本插班生考试样卷数学与应用数学专业高等代数A卷题号一二三四五六七八九十总分评卷人得分、选择题(每小题3分,共15分)题号12345答案1 .m个方程n个未知量的线性方程组中,若其系数矩阵的秩等于m,则()成立。(A)方程组一定有解;(B)方程组一定有无穷多解;(C)方程组一定无解;(D)方程组一定有唯一解.2 .设E1E2EsAEs+1-Et=I,其中Ei为初等矩阵,i=1,2,,t,则A-1等于().(A)E1E2Et;(B)EtE2E1;(C)Es+1EtE1Es;(D)EtEs+1E1Es.A1,3 .设A1,A”,As都是n阶方阵,则对角线分块矩阵A2.的秩等
2、<As)于().(A)秩(AiA2As);(B)秩A1X秩A2Xx秩As;(C)秩(A1+A2+As);(D)秩A1+秩A2+秩As.4.设加,党,,健与伪,白,区均为线性相关的向量组,则下列结论正确的是().(A)od+01,c2+区,光+,线性相关;(B)a1+01,o2+国,研诊线性无关;(C)为,02,os,8,也,国线性相关;(D)on,C2,,cs,跳也,3线性无关.5.%=/2,2,-1%12,-1,2是R3的规范正交组,添加()1333)1333J可以扩充为R3的规范正交基.(A)(3,(C)-2223,一3(D),321,33;237.矩阵A=的矩阵.01"T
3、10与B=001)I。()00”10可以看成某一线性变换关于两个基的02()二、填空题(把答案填在题中横线上。每小题3分,共15分)1 .在n元排列中,反序数最大的排列的反序数为.2 .实数域上的不可约多项式的次数只能是.3 .f(x)=2xmxn矩阵A的行向量组所生成的Fn的子空间叫做A的.三、判断题(每小题2分,共14分.你认为正确的,在题后圆括号内打,错误的打“X”。)1.81357246是偶排列.()2.多项式x4-2x3+2x-3在有理数域上是不可约的.()3.设A是n阶方阵,那么det(-A)=-detA.()4.在欧氏空间V中,当向量U于0尸#0时,有化尸尸&/2.()5
4、.设f:2B,g:B-C是映射,又令h=g0f.如果h是单射,那么g也是单射.6.复数域上两个n元二次型等价的充分必要条件是它们的矩阵有相同的秩10x4.复数域C作为实数域R上的向量空间,维数是.+16x316x2+14x6在Qx内的典型分解式为1-63四、(8分)求矩阵A=054的逆矩阵.1064,五、(8分)求齐次线性方程组X|-x2+5x3-x4=0,jx1+x2-2x3+3x4=0,3xi-x28x3x4=0,xi3x2-9x37x4=0的一个基础解系.六、(8分)计算行列式daba+b+ca2a3abb2b3c2c3cdd2d3七、(8分)证明:多项式f(x)=1十x2土2!川十土在
5、复数域C内没有重根.n!八、(8分)设向量组%线性无关,证明口+P,P+Z¥+u也线性无关.九、(8分)设仃是数域F上向量空间V上的一个线性变换,口和P是仃的属于不同本征信九,N的本征向量.证明:Vk=F(k#0),口+kB不是b的本征向量.十、(8分)设A与B都是n阶方阵.证明:如果AB=O,那么秩A+秩B&n.【自己得出来的答案】1 .A2 .C(由已知A=(E1E2-Es)A-1(Es+1Et)A-1所以AA-1=Es+1-EtE1E2-Es)3 .D(r(A)=r(A1)+r(A2)+r(As)4 .C(部分相关则整体相关,整体无关则部分无关)5.B(利用正交来做,再
6、单位化)(属于不同特征值的特征向量彼此正交,故(a1)at*a3=0,(a2T*a3=0即解齐次线性方程组,其系数矩阵为(2/32/3-1/3)2/3-1/32/3一a3=(1-2-2/(1A2+(-2)A2+(-2)A2)=(1/3-2/3-2/3(最后一步是标准化)1. n(n-1)/22. 1或2(实数域上的不可约多项式类型有2种:一次多项式,只含非实共腕复数根的二次多项式.所以是1或2)3. f(x)=2(x-1)(x-3)(xA3-xA2+x-1)4. 25. 行空间三.1. 错(反序数为13,是奇排列)2. 对3. 错(det(-A)=(-1)AndetA)4. 对5. 错(f为单
7、射)6. 对7. 错(一个线性变换b在两个基下的矩阵A、B的关系是相似(即B=Ta-1AT),而相似矩阵必有相同的特征值,故有相等的行列式与迹)四.00五.-3/2己1=1-3-3/2-2-3/235/2-17/2己2=-21001六.将第2行加到第1行第1行提出公因子a+b+c+d行列式化为范德蒙行列式故D=(a+b+c+d)(b-a)(c-a)(d-a)(c-b)(d-b)(d-c)七.令g(x)=f(x)=1+x+xA2/2!+xA3/3!+.+xA(n-1)/(n-1)!f(x)=g(x)+xAn/n!显然g(x)不能整除xAn/n!(后者只有0为根。0显然不是g(x)的根)所以g(x
8、)也不能整除f(x),所以f(x)无重根(多项式有重根的充要条件是能被导数整除)八.证明:假设a+0B+丫丫+a线性相关,则存在一组不全为零的数kl,k2,k3,使得k1(a+0)+k2(0+丫)+k3(丫+a)=0(k1+k3)a+(k1+k2)0+(k2+k3)丫=0又因为aBy线性无关所以k1+k3=k1+k2=k2+k3=0解得k1=k2=k3=0与假设矛盾,所以假设不成立所以a+BB+y丫+a线性无关九.解:反证,设a+kB是线性变换(T的属于本征值(的本征向量WJ(r(a+kB)=t(a+kB),所以(r(a)+k(r(B)=(a+ktB,由已知,(a,B是分别属于(T的两个不同本征信入、卜的本征向量)(r(a)=2ia,(t(B)=nB,所以入a+kpB=ta+k(B,所以(-入)a+k(-以)B=0.由于属于不同本征值的本征向量线性无关,所以(-入)=k(1-n)=0.由于kw0,所以(=人=g这与已知矛盾(题中入、11是不同的本征值).注:1 .属于不同本征
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 研究生定向协议书盖章
- 维护生产协议书
- 2025劳动合同将实行备案制度
- 2025年短视频创作者打赏分成协议
- 2025年班车租赁合同范本
- 2025-2030年低空经济航空旅游市场前景预测与产业链研究报告
- 2025年工业厂房金刚砂耐磨地坪厚度检测技术报告
- 2025年宠物老年护理行业服务评估与改进方向
- 产品尚佳营销方案
- 联通相同营销方案
- 四级手术术前多学科讨论优化
- 超市供应商管理办法
- DB37-T 5329-2025 城市居民生活节水用水量标准
- 幼儿园日常维修合同协议
- 光伏居间合同范本协议书
- 2025至2030中国口腔喷雾剂行业市场深度研究及发展前景投资可行性分析报告
- 2025年镗工技师职业技能鉴定模拟题库
- 2025年本科院校学工处招聘笔试模拟题及答案
- 变电站ATS自动转换开关课件
- 手术室安全隐患课件
- 医院信息化建设的发展历程
评论
0/150
提交评论