三氯氢硅氢还原制备高纯多晶硅_第1页
三氯氢硅氢还原制备高纯多晶硅_第2页
三氯氢硅氢还原制备高纯多晶硅_第3页
三氯氢硅氢还原制备高纯多晶硅_第4页
三氯氢硅氢还原制备高纯多晶硅_第5页
免费预览已结束,剩余19页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、三氯氢硅氢复原制备高纯多晶硅1.高纯多晶硅生产工艺简介20世纪50年代,联邦德国西门子公司研究开发由大规模生产多晶硅的技术,即通常所说的西门子工艺.多晶硅生产的西门子工艺,其原理就是在外表温度1100c左右的高纯硅芯上用高纯氢复原高纯含硅反响物,使反响生成的硅沉积在硅芯上.改进西门子方法是在传统西门子方法的根底上,具备先进的节能低耗工艺,可有效回收利用生产过程中大量的SiCl4、HCl、H等副产物以及大量副产热能的多晶硅生产工艺.经过半个世纪的开展,多晶硅的制备从生产技术、规模、质量和本钱都到达空前的水平,主要集中在美国、日本、德国三个国家.这三国几乎垄断了世界多晶硅市场.多晶硅生产的技术仍在

2、进步开展,比方现在由现的硅棒对数达上百对的复原炉,可以使多晶硅的复原能耗降低到一个新的水平.多晶硅的规格形态:外表无氧化杂质,呈银灰色带有金属光泽Si含量99.9999%(太阳能级)99,9999999(电子级)B含量<0.003PPb(W)P含量<0.3PPb(W)C含量<100PPb(W)体内金属含量w0.5PPb(W)(Fe,Cu,Ni,Zn,Cr)2 .三氯氢硅氢复原反响根本原理2.1 三氯氢硅氢复原反响原理SiHCl3和H混合,加热到900c以上,就能发生如下反应:SiHCl3气十H2气."0-11吧tSi固+3HCl气同时,也会产生SiHCl3的热分解以

3、及SiCl4的复原反响_900C_4SiHC®>Si3SiCl42H2SiCl42H2,Si4HCl此外,还有可能有2SiHCl3:Si2HClSiCl4SiHCl3:SiCl2HCl以及杂质的复原反响:2BCl33H2;2B6HC1PCl33H2:2P6HC1这些反响,都是可逆反响,所以复原炉内的反响过程是相当复杂的.在多晶硅的生产过程中,应采取适当的举措,抑制各种逆反响和副反响.以上反响式中,第一个反响式和第二个反响式可以认为是制取多晶硅的基一本反响,应尽可能地使复原炉内的反响遵照这两个根本反响进行.2.2 SiHCl3氢复原反响的影响因素2.2.1 反响温度SiHCl3被

4、氢气复原以及热分解的反响是吸热反响.所以,从理论上来说,反响的温度愈高那么愈有利于反响的进行.例如,以一定的氢气配比,在1240c时复原SiHCl3,沉积硅的收率较1000c时沉积硅的收率高大约20%o此外,反响温度高,硅的结晶性就好,而且外表具有光亮的金属光泽;温度越低,结晶变得细小,外表呈暗灰色.反响温度也不能过高,由于:1硅与其他半导体材料一样,从气相往固态载体上沉积时有一个最高温度值,反响温度超过这个值时,随着温度的升高沉积速率反而下降.各种不同的硅卤化物有不同的最高温度值,反响温度不应超过这个值.止匕外,还有一个平衡温度值,高于该温度才有硅沉积由来.一般说来,在反响平衡温度和最高温度

5、之间,沉积速率随温度增高而增大.2温度过高,沉积硅的化学活性增强,受到设备材质沾污的可能性增加,造成多晶硅的质量下降.3直接影响多晶硅品质的磷硼杂质,具化合物随温度增高,复原量也增大,从而进入多晶硅中,使多晶硅的质量下降.4温度过高,还会发生硅的腐蚀反响:Si+2HC1-21吧tSiH2c12Si+SiC14R吧t2SiC12所以过高温度是不适宜的.但是温度过低对反响也不利,例如在9001000C时,S1HC3的复原反响就不是主要的,而主要是SiHCl3的热分解反响,将导致SiHCl3的转化率降低.在10801200c范围内,SiHCl3的反响以氢复原反响为主,生产中常采用的反响温度为1080

6、1100c左右.需要注意的是硅的熔点为1410到1420C,与反响温度比拟接近,因此生产中应严格限制反响温度的波动,以免温度过高使硅棒熔化倒塌,造成较大损失.脚喇伽1名图1反响温度对复原反响的影响2.2.2 反响配比复原反响时,氢气与SiHC13的摩尔数之比也叫配比对多晶硅的沉积有很大影响.只有在较强的复原气氛下,才能使复原反响比拟充分地进行,获得较高的SiHC13转化率.如果按反响式计算所需的理论氢气量来复原SiHC13,那么不会得到结晶型的多晶硅,只会得到一些非晶态的褐色粉末,而且收率极低.增加氢气的配比,可以显著提升SiHC13的转化率.图4-2表示SiHC13在不同氢气配比情况下的理论

7、平衡转化率.常,导H费溟升.图2SiHCI3在不同氢气配比情况下的理论平衡转化率通常,实际的转化率远远低于理论值.一方面是由于还原过程中存在各种副反响,另一方面是实际的复原反响不可能到达平衡的程度.但是,总的情况仍然是复原转化率随着氢气与SiHCl3的摩尔比的增大而提升,氢气与SiHCl3的配比不能过大,由于:1氢气量太大,稀释了SiHCl3的浓度,减少SiHCl3分子与硅棒外表碰撞的时机,降低硅的沉积速度,也就降低了单位时间内多晶硅的产量.同时,大量的氢气得不到充分的利用,增加了消耗.2从BC13,PCI3的氢复原反响可以看生,过高的氢气浓度不利于抑制B、P的析由,从而影响产品质量.由此可知

8、,配比增大,那么SiHC%的转化率也增大,但是多晶硅的沉积速率会降低.对于低配比所带来的SiHCl3一次转化率降低的影响,可以通过尾气回收未反响的SiHCl3,返回多晶硅复原生产中去使用,从而保证SiHCl3得到充分利用.2.3 反响气体流量在选择了适宜的气体配比及复原温度条件下,进入复原炉的气体量越大,那么沉积的速度越快,炉内多晶硅产量也越高.在同样的设备内,采用大流量的气体进入复原炉,是一种提升生产水平的有效方法.这是由于,流量越大,在相同时间内同硅棒外表碰撞的SiHCl3分子数量就越多,硅棒外表生成的硅晶体也就越多.同时,气体流量大,通过气体喷入口的气流速度也大,能更好地造成复原炉内气流

9、的湍动,消减发热体外表的气体边界层和炉内气体分布不均匀的现象,有利于复原反响的进行.图3说明,SiHCl3通入复原炉的量增大时,沉积多晶硅的速度加快,生成的硅量也增加.图3多晶硅生长速度与SiHCl3流量的关系但是,SiHCl3的流量增大,会造成SiHCl3在炉内的停留时间太短,使SiHCl3转化率相对降低.如果具备有效的尾气回收技术,那么可以回收未反响的SiHCl3再重新投入反响,从而可以采用大流量的生产工艺,以提升多晶硅沉积速率及产量.2.4 发热体外表积随着复原过程的进行,生成的硅不断沉积在发热体上,发热体的外表积也越来越大,反响气体分子对沉积面发热体表外表的碰撞时机和数量也增大,有利于

10、硅的沉积.当单位面积的沉积速率不变时,外表愈大那么沉积的多晶硅量也愈多.因此多晶硅生产的复原反响时间越长,发热体直径越大,多晶硅的生产效率也越高.2.5 沉积硅的载体沉积硅的载体,既是多晶硅沉积的地方,又要作为发热体为反响提供所需的温度.作为沉积硅的载体材料,一般要求材料的熔点高,纯度高,在硅中的扩散系数小,以预防在高温下对多晶硅产生沾污,又应有利于沉积硅与载体的分离.为了使载体发热,采取的方法是给载体通入电流,就如同电阻丝一样,通过限制电流的大小来限制其温度.硅芯本身是高纯半导体,具有电阻率随着温度升高而降低的特性,常温下几乎不导电,需要很高电压才能将其“击穿导电所谓“击穿,是指硅芯在几千伏

11、高电压下,会有微小电流流过硅芯,使其发热逐渐转变为导体的过程;当硅芯温度升高电阻率下降,已经可以很好地导电了.预热启动:根据硅芯电阻率随温度升高而降低的规律,对硅芯进行预热升温,其温度到达一定程度后,电阻率大幅度下降,此时加上较低的电压便可给硅芯通入电流.常用的预热方法有等离子体预热和石墨棒预热等.3 .三氯氢硅工艺复原工序的主要组成系统:电极冷却水系统、炉体冷却水系统、复原炉供电系统、炉体清洗系统、复原主物料系统、氢化主物料系统3.1 .1三氯氢硅氢复原的物料工艺流程SiHCl3氢复原工艺流程见图:高纯SiHCl3来自精储高纯H2来自电解氢要求,经管道连续参加到TCS进料罐.在进料罐中通过氢

12、气加压的方式将TCS输送到气体限制台中.经尾气回收系统回收的氢气与来自制氢系统的补充氢气在管路中集合后也先进入氢气缓冲罐中,然后再输送到气体限制台.氢气和TCS在气体限制台中通过限制压力、流量后进入静态混合器,由此形成一定配比的隆和SiHCl3的气液混合物在完成混合过程以后,混合物料经过螺旋管换热器李比希管得热量以后进入复原炉.气体沿着管路进入到复原炉中,在外表温度达1100C的硅芯热载体上反响,并在载体上沉积由多晶硅来,同时生成HCl、SiH2cI2、SiCl4气体等,与未反响完的Hz和SiHCl3气体一起被排由复原炉,沿管路进入尾气回收系统.在尾气回收系统中,被冷凝、别离、冷凝下来的氯硅烷

13、被送到别离提纯系统进行别离与提纯,然后再返回多晶硅生产中.别离由来的氢气返回氢复原工艺流程中的蒸发器中,循环使用.别离由来的氯化氢气体返回SiHCl3合成系统中.3.2 三氯氢硅氢复原中物料系统的主要设备3.2.1 TCS进料缓冲罐和氢气缓冲罐作用:用于稳定系统中物料的压力和流量.3.2.2 气体限制台作用:用于调节限制进入复原炉的压力和气体流量3.2.3 螺旋管换热器李比希管作用:与复原尾气换热,得到热量使液态的TCS汽化,减小复原炉的能耗.3.2.4 复原炉复原的根本结构如图8.图8复原炉结构示意图现在的复原炉一般采用钟罩式结构,由炉筒钟罩、底盘、电极、窥视孔、进由气管等组成,一般采用不锈

14、钢制成,以减少设备材质对产品的沾污.复原炉的内壁平滑光亮,炉筒和底盘均有夹层,可以通热水带走辐射到炉壁上的热量,以保护炉体和密封垫圈.炉顶设平安防爆孔及硅芯预热装置.炉体上还设有窥视孔,通过它可以观察了解炉内的各种情况.底盘是夹套式的,在底盘上布置有一定数量的电极,炉内的载体硅芯就坐放在电极上,复原炉的电源通过电极向载体供电,使载体发热,提供炉内反响所需的温度.电极一般用铜制成.电极中间是空心的,可以通冷却水进行冷却,以预防电极的密封垫圈损坏,电极与载体用石墨夹头进行连接.3.2.5 复原尾气换热器列管式换热器,作用将复原尾气温度降低至100C,后输送到复原尾气干法回收工序CDIo3.3.2工

15、艺过程简述开炉前的一切准备工作和安装工作完成后,那么封闭复原炉,并确认冷却水已通入炉筒、底盘、电极以及一切需要通冷却水的地方.然后往炉内通入纯氮气以置换由炉内的空气,完成后再通入纯氢气以置换由氮气.之后便可进行高压启动或硅芯预热启动.当启动完成,硅芯通上电流并到达所需的温度后,还要在连续的氢气流中灼烧一段时间.之后,确定蒸发器的温度、压力、液位到达要求以及由来的混合气配比到达要求后,便可将混合气体根据所需的流量通入复原炉中,复原反响立即开始.在正常反响过程中,随着多晶硅在硅芯外表上的沉积,硅芯变粗为硅棒,硅棒继续长粗,直到到达所需的直径.由于硅棒横截面积的增大,硅棒的电阻变小,因此为了保持硅棒

16、外表所需的反响温度,就要随着硅棒直径的增大而增大硅棒电流,此时硅棒电压会下降,但是硅棒消耗的总功率会增大.同时,硅棒的直径增大使硅棒的外表积也增大.在前面我们讨论过,发热体的外表积增大会使多晶硅沉积速度加快,因此越是到后期多晶硅的沉积速度越决,这就要求进料量要随之增大,以满足多晶硅沉积速度不断加快的要求.总的来说,在复原过程中,硅芯长粗成为硅棒,硅棒的直径继续增大,同时硅棒的电流也增大,电压下降,功率增加,进料量随着加大.3.4工艺操作条件对多晶硅质量和产量的影响 .4.1夹层问题在从径向切断的多晶硅棒截面上可能会看到一圈圈的层状结构,即夹层.多晶硅中的夹层一般分为氧化夹层和温度夹层及无定形硅

17、夹层两种.1氧化夹层在复原过程中,当原料中混有水汽或氧时,就会发生水解及氧化,形成一层SiO2氧化层附在硅棒上.在这种被氧化的硅棒上又继续沉积硅时,就形成了“氧化夹层,这种夹层在光线下可以看到五颜六色的光泽.酸洗也不能除去这种氧化夹层.由于这种氧化夹层的存在,用多晶硅拉制单晶硅时会产生“硅跳喷硅.为了消除氧化夹层,一般应注意做到: 严格限制入炉氢气的纯度,保证氢中的氧和水分降到规定值以下; 载体加热前要有充分的赶气时间,使炉壁附着的水分赶净; 开炉前对设备认真检查预防漏水现象.(2)无定形硅夹层(温度夹层)当复原反响是在比拟低的温度下进行时,此时沉积的硅为无定形硅,在这种无定形硅上提升反响温度

18、继续沉积时,就形成了暗褐色的无定形硅夹层,由于这种夹层在很大程度上是受温度影响,因此又称为“温度夹层.这种疏松、粗糙的结构夹层中,常常有许多气泡和杂质,在拉单晶前用酸无法腐蚀处理掉,在拉晶熔料时,轻者使熔硅液面波动,重者产生“硅跳以至于无法使用.为了预防无定形硅夹层的形成,应注意以下几点: 硅棒的电流上升要平稳,不能忽高忽低; 预防进炉的流量发生大的波动; 忽然停电或停炉时,先要停止进料.采用合理可靠的自动限制系统,通过准确地测定硅棒表面的速度来限制硅棒电流,使硅棒的电流紧随着硅棒外表的温度变化而迅速变化,将有效预防“温度夹层的由现.3.4.2“硅油问题“硅油是一种大分子量的硅卤化物SiCl2

19、n-H2N,其中含硅25%呈油状的物质,这种油状物是在复原炉中低温部位产生的低于300C,往往沉积在炉壁、底盘、喷口、电极及窥视孔石英片等冷壁处.硅油的产生,导致大量的硅化合物的损失,降低实收率;沉积在窥视孔石英片上的硅油,使镜片模糊,影响观察和测温,从而影响炉内温度的调节,甚至可以造成硅棒的温度过高而烧断.硅油具有强烈的吸水比,因而在拆炉时,硅油强烈的吸收空气中的水分同时游离由HCI而腐蚀设备,还会引起自燃爆炸,给生产带来麻烦.为了预防硅油的产生,可采用以下举措:调节炉壁冷却热水温度,使炉壁温度限制在要求的温度.停炉前降低冷却水流量,提升炉壁温度使硅油挥发.3.4.3硅棒外表质量问颗影响硅棒

20、外表质量的原因是多方面的,要根据具体情况具体分析.通过实践,主要有以下几种原因:1温度效应半导体材料从气相往载体上沉积的速度,当超过莫一最大值T最大时,随着温度升高沉积速度反而下降.当载体温度超过T最大而外表温度波动不均匀时,在较冷的外表局部沉积速度快,热的外表沉积速度慢,这种非均匀沉积,产生微小的外表凹凸现象,而凸起的外表易散热而变冷,微小的凸起逐渐长大,形成小结和小瘤.当载体外表温度低于T最大,那么与上述恰恰相反,外表温度起伏时,在热外表部位沉积速率快,由现微小凸起,但凸起外表由于散热而变冷,因此沉积速度又缓慢下来,这就是“自动调平效应.因此,严格限制硅棒说明温度低于T最大,而又接近于T最

21、大的某一适宜的温度就能消除外表凹凸现象.一般说来,当温度低于T最大,随着温度的升高使硅的结晶变得粗大、光亮,温度越低,结晶变得细小,外表呈暗灰色,但温度不能过低,如低于1000C时,那么会生成疏松的暗褐鱼不定形硅.硅棒外表温度不能过高,由于高温下大于1200C硅会发生逆腐蚀反响:Si+2HC1一之tSiH2c12SiSiC14">2SiC12反响生成的HC1和SiCl4均能使硅在高温下腐蚀.(2)扩散效应研究复原反响动力学时发现,沉积过程根本上是受扩散限制的.复原反响生成的氯化氢气体会在热载体外表形成气体层,如果反响混合气在载体周围莫些部位的循环缺乏以消除气体层,那么这些部位上

22、容易沉积由针状或其他凸起物,而在这些凸起点上特别有利于硅的沉积,进而开展为小结、小瘤,相邻近小瘤连接在一起,具下面夹杂气体并使沉积硅的外表粗糙、疏松.硅复原反响的化学平衡研究说明,气态原料向载体外表扩散浓度的局部变化,反映在沉积硅棒上也要产生畸形生长.但气相中原料浓度到达使硅的沉积速度超过载体外表所能吸收并使之形成晶体的速度时,也会产生变形.综上所述,不难看生,要获得优质的多晶硅,就要严格限制在复原过程中的工艺条件,如原料的纯度(包括H中的02和H2O)、SiHCl3和H2的流量以及配比;还要严格控制反响温度等,只有这样,才能得到优质、合格的产品四氯化硅氢化1 .四氯化硅来源与性质1.1 四氯

23、化硅的产生在多晶硅生产过程中,在SiHCls合成工序和氢复原制取多晶硅工序,会产生大量的副产物SiCl4,并随着尾气排由.在氢复原工序中,会发生以下几个反响:SiCl4和H混合,在1250c高温环境,发生如下反响:SiCl4气+H2气<>SiHCl3气+HC1气1.2 四氯化硅的性质四氯化硅在常温常压条件下是无色透明的液体,无极性,易挥发,有强烈的刺激性,遇水即水解生成二氧化硅和HCL并能与苯、乙醍、氯仿等互溶,与乙醇反响可生成硅酸乙酯.由于四氯化硅易于水解,并生成HCl所以在有水的环境下具有强烈的腐蚀性.四氯化硅的物理性质见下表表1:表1SiCl4物理性质表名称数值名称数值分子量

24、169.2烝发热,kcal/mol6.96液态密度,kg/l1.47生成热,kcal/mol-163.0气态密度,kg/l0.0063标准生成自由能,kcal/mol-136.9熔点,C-70临界温度,C230沸点,C57.6对于四氯化硅的利用.目前国内外多晶硅工厂采用得比较多得方法有以下两种:四氯化硅经氢化后转化为三氯氢硅,后者可以作为生产多晶硅的原料;将四氯化硅作为化工原料用于生产其他类型的产品如硅酸乙酷、有机硅和气相白碳黑等.在多晶硅生产过程中,由于产生的SiCl4的量非常大据资料,每生产1kg多晶硅大约要产生22kgSiCl4.因此,SiCl4的回收和利用成了制约多晶硅生产的一个关键因

25、素.作为提高多晶硅产量的一个有效手段,SiCl4经氢化后转化为三氯氢硅,再用于生产多晶硅是大局部多晶硅生产厂家优先考虑的方法.2.四氯化硅氢化方法2.1 工业使用的四氯化硅氢化方法四氯化硅氢化的方法,即“热氢化法俄罗斯采用,其反应原理如下:将四氯化硅与氢气根据一定配比混合,混合气在反响炉中和高温条件下进行反响,氢气将四氯化硅复原后得到三氯氢硅,同时生成氯化氢.整个过程与氢复原反响很相似,同样需要制备混合气的蒸发器,氢化反响炉与复原炉在结构上也很相似,只不过氢化反响得到的是三氯氢硅而不是多晶硅,四氯化硅热氢化的工艺流程示意图如下图1:图1四氯化硅热氢化工艺流程示意图从精微来的四氯化硅被送到汽化器

26、中挥发为气态,并与回收的氢气及补充的氢气按一定的配比形成混合气,这一过程的原理、设备及操作都和三氯氢硅氢复原的蒸汽混合物制备过程相同,只是两者的限制参数不尽相同.所制得的四氯化硅和氢气的混合气进入氢化炉中,在氢化炉内炽热的发热体外表发生反响,生成三氯氢硅和氯化氢.在这个过程中,四氯化硅并不是全部百分百地转化为三氯氢硅,真正参与反响并转化成三氯氢硅的只是其中很小一局部大约18%.从氢化炉由来的尾气中大局部是氢气和四氯化硅,三氯氢硅和氯化氢只是其中的少数.这些尾气被送到尾气回收装置中,将各个组分别离由来,氢气返回氢化反响工序中,氯化氢送去参与三氯氢硅合成,氯硅烷其中四氯化硅占大局部,其余是三氯氢硅

27、送到精微去别离提纯后,四氯化硅又返回氢化炉、三氯氢硅那么被送到氢复原工序用于制取多晶硅.与催化氢化方法相比,四氯化硅热氢化过程反响温度较高,能耗也会有所上升.但是在氢化反响炉的设计上采用双隔热屏,减少热量散失,有利于降低热氢化过程的能量消耗.但是被反响气体带走的热量损耗将无法预防,这也是热氢化法的缺乏之处.而且热氢化法中间的四氯化硅转化率只有18%低于催化氢化的25%.2.2 四氯化硅热氢化法热氢化过程与氢复原过程很相似,但是在反响条件、设备及其他一些方面还是有较大的差异,下面就热氢化过程作分段详细表达.2.2.1 四氯化硅原料的来源四氯化硅是多晶硅工厂中最主要的副产物,产量很大.比方在三氯氢硅合成过程中,在生成三氯氢硅的同时,就大约要生成约10%的四氯化硅.另外在氢复原生成多晶硅的同时也要产生大量的四氯化硅,以及热氢化反响未转化的四氯化硅.这些四氯化硅随工艺尾气经过尾气回收装置回收别离后,在精储工段提纯,得到纯洁的四氯化硅,作为热氢化的原

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论