matlab声音去噪研究报告_第1页
matlab声音去噪研究报告_第2页
matlab声音去噪研究报告_第3页
matlab声音去噪研究报告_第4页
matlab声音去噪研究报告_第5页
免费预览已结束,剩余18页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、个人资料整理 仅限学习使用课程设计说明书课题名称: 基于 MATLAB的信号去噪研究姓名及学号: 吴永 21006021078 周浩然 21006021099 胡军 21006021024专业班级: 09电本 1班成 绩:指导教师:课题工作时间: 2018年 11 月 20日12月 12日一、课程设计的任务基本要求该课程设计的主要内容:设计基于单片机的超声波测距系统,以 AT89S5单1 片机为核心芯片,利 用超声波传感器来发射接收信号。最后使用软件进行电路仿真或做出实物, 要求电路简单性能良好。要求:1.选题方向正确,具有科学性、实用性和可行性。2. 研究方案合理、技术路线、课题计划安排得当

2、。3. 实现超声波传感检测技术的技术方案。教研室主任签4. 完成检测模块的设计工作软硬件)。指导教师签字:字:年月二、进度安排:2018 年 11 月 20 日-2018 年 11 月22设计方案确定与资料查2103 年 11 月 23 日-2018 年 11 月25硬件设计与制作2018 年 22 月 26 日-2018 年 11 月28软件程序设计2018 年 12 月 10 日-2018 年 12 月12系统联合调试与系统完善三、收集资料及主要参考文献 :1 林昱, 钱昆 . Lotus Domino R5 开发教程M.北京 : 电子工业出版社 , 2001.2 冯锦峰 , 惠月 . L

3、otus Domino/Notes R5应用开发指南 M. 北京: 北京希望电子出版社,2000.3刘贵忠 , 邸双亮 . 小波分析及其应用 M. 西安: 西安电子科技大学出版社 ,1997.4吴湘淇 . 信号系统与信号处理 ( 下>M. 北京:电子工业出版社 ,1996.5孙兆林 .MATLAB 6.X 图像处理 M. 北京 :清华大学出版社 ,2002.6孙延奎 . 小波分析及应用 M. 北京: 机械工业出版社 ,2006.7李加升 , 黄文清 , 戴瑜兴 .基于自定义阈值函数的小波去噪算法 8 徐长发 , 李国宽 .实用小波方法 M. 武汉: 华中科技大学出版社 ,2001.8 胡

4、昌华 , 张军波 , 夏军 ,等.基于 MATLAB的系统分析与设计 (小波分析 >M. 西安 : 西安电子科技大学出版社 ,1999.217-225.三、中文摘要:波分析理论是一种新兴的信号处理理论,它在时间上和频率上都有很好的局 部性,这使得小波分析非常适合于时 - 频分析,借助时 - 频局部分析特性,小波 分析理论已经成为信号去噪中的一种重要的工具。利用小波方法去噪,是小波 分析应用于实际的重要方面。小波去噪的关键是如何选择阈值和如何利用阈值 来处理小波系数,通过对小波阈值化去噪的原理介绍 , 运用 MATLAB中 的小波工 具箱,对一个含噪信 号 进行阈值去噪,实例验证理论的实际

5、效果,证实了理论的可靠性。本文简述了几种小波去噪方法,其中的阈值去噪的方法是一种实现 简单、效果较好的小波去噪方法。六、成绩评定:指导教师评语:2018指导教师签字:年月日工程评价工程评价文献综述工作量、实践能力工作态度分析、解质量决问题能力创新得分七、答辩记录八、答辩意见及答辩成绩答辩小组教师 签字):2018 年 月 日总成绩:教师评分× 75%+答辩成绩× 25%)目录引言 11. 小波去噪原理分析 21.1 小波去噪原理 21.2 小波去噪步骤 32. 阈值的选取与量化 32.1 软阈值和硬阈值 32.2 阈值的几种形式 42.3 阀值的选取 53. 小波消噪的 M

6、ATLAB实现 53.1 小波去噪函数集合 53.2 小波去噪验证仿真 64. 小波去噪的 MATLAB仿 真对比实验 8结语 11 参考文献 11引言小波变换的概念是由法国从事石油信号处理的工程师 J.Morlet 在 1974 年 首先提出的, I.Daubechies 1 的小波十讲对小波的普及起了重要的推动作 用。现在,它已经在科技信息产业领域取得了令人瞩目的成就。小波分析的应 用领域十分广泛 234 。在数学方面,它已用于数值分析、构造快速数值方法、 曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、 压缩、传递等。在图象处理方面的图象压缩、分类、识别与诊断,去污等

7、。在 医学成像方面的减少 B超、 CT、核磁共振成像的时间,提高分辨率等。在实际的计算机控制系统中,采样信号不可避免的受到各种噪声和干扰的 污染,使得由辨识采样信号得到的系统模型存在偏差而妨碍了系统控制精度的 提高。通信信号去噪工作原理是利用噪声和信号在频域上分布的不同来进行 的。在传统的基于傅氏变换的信号去噪方法中,总是使得信号和噪声的频带重 叠部分尽可能小,这样在频域通过时不变滤波,就将信号和噪声区分开。但如 果两者重叠区域很大时,就无法实现去噪的效果了。 Donoho和Johnstone 5 提出 的小波收缩去噪算法对去除叠加性高斯白噪声非常有效。由小波变换的特性可 知,高斯噪声的小波变

8、换仍然是高斯分布的,它均匀分布在频率尺度空间的各 部分,而信号由于其带限性,它的小波系数仅仅集中在频率尺度空间上的有限 部分。如何从这些受噪声干扰的信号中估计得到“纯净”的信号是建立系统高精 度模型和实现高性能控制的关键。滤波器去噪是实际应用最广泛的一种方法,但时常在滤除噪声的同时导致 了有用信号的失真,它是从纯频域的角度来分析应该消除哪些频率范围内的噪 声。 1995年Donoho 和Johnstone 提出了小波收缩去噪的技术,他们研究的是在 叠加性高斯白噪声环境下检测出真实信号的情况,利用正交小波变换和高斯随 机变量的性质对信号的小波分解系数做阈值量化,无失真的还原出真实信号。本文对 D

9、onoho -Johnstone 的去噪方法做了总结推广,研究了在高斯白噪声 情况下选择小波变换的去噪效果,并公式化了实际数据中的几种更复杂的噪声 模型;并对 Donoho -Johnstone 的小波去噪方法在 MATLA环B 境下做了较为详尽的 研究,验证了小波去噪的可靠性并对比了傅里叶去噪和小波去噪的效果。1. 小波去噪原理分析1.1 小波去噪原理叠加性高斯白噪声是最常见的噪声模型 6 ,受到叠加性高斯白噪声“污染” 的观测信号可以表示为:(1-1>其中yi为含噪信号, 为“纯净”采样信号, zi 为独立同分布的高斯白噪声 , 为噪声水平,信号长度为 n. 为了从含噪信号 yi 中

10、还原出真实 信号 ,可以利用信号和噪声在小波变换下的不同的特性,通过对小波分解系 数进行处理来达到信号和噪声分离的目的。在实际工程应用中,有用信号通常 表现为低频信号或是一些比较平稳的信号,而噪声信号则通常表现为高频信 号,所以我们可以先对含噪信号进行小波分解 7 <如进行三层分解):图 1-1 三层小波分解示意图其中 为分解的近似部分,为分解的细节部分,, 则噪声部分通常包含在 , , 中, 号即可达到去噪的目的。用门限阈值对小波系数进行处理,重构信1.2 小波去噪步骤总结去噪过程,可以分成以下三个步骤:1对观测数据作小波分解变化 8 :(1-3>其中y表示观测数据向量 y1,y

11、2,y,f 是真实信号向量 f 1,f 2,fn,z是高斯 随机向量 z1, z2,zn,其中用到了小波分解变换是线性变换的性质。2)对小波系数 W0作门限阈值处理 根据具体情况可以使用软阈值处理或硬阈 值处理,而且可以选择不同的阈值形式,这将在后面作详细讨论),比如选取 最著名的阈值形式 9 :(1-4>门限阈值处理可以表示为 ,可以证明当 n 趋于无穷大时使用阈值公式(4对小波系数作软阈值处理可以几乎完全去除观测数据中的噪声。3对处理过的小波系数作逆变换重构信号 10:(1-5>即可得到受污染采样信号去噪后的信号2. 阈值的选取与量化Donoho-Johnstone小波收缩去噪

12、方法的关键步骤是如何选择阈值和如何进 行门限阈值处理,在这将作较为详细的讨论。2.1 软阈值和硬阈值在对小波系数作门限阈值处理操作时,可以使用软阈值处理方法或硬阈值处理方法,硬阈值处理只保留较大的小波系数并将较小的小波系数置零:(2-1>软阈值处理将较小的小波系数置零但对较大的小波系数向零作了收缩:(2-2>直观形式见图 2-1<图中取 t=1 )从图上我们可以看出软阈值处理是一种更为 平滑的形式,在去噪后能产生更为光滑的结果,而硬阈值处理能够更多的保留 真实信号中的尖峰等特征软阈值处理实质上是对小波分解系数作了收缩,从而 Donoho-Johnstone 将这种去噪技术称之

13、为小波收缩 1112 。图 2-1 硬阀值和软阀值2.2 阈值的几种形式 阈值的选取有多种形式,选取规则都是基于含噪信号模型式 ( 1.1>中信号水 平为 1的情况,对于噪声水平未知或非白噪声的情况可以在去噪时重新调整得到 的阈值。在MATLA中B有4种阈值函数形式 13可以选用 :(1>sqtwolog: 采用固定的阈值形式,如式 (1.4> ,因为这种阈值形式在软门限 阈值处理中能够得到直观意义上很好的去噪效果。(2>minimaxi 采用极大极小原理选择的阈值,和 sqtwolog 一样也是一种固定的 阈值,它产生一个最小均方误差的极值,计算公式为 :(2-3&g

14、t;(3> rigrsure: 采用史坦的无偏似然估计原理进行阈值选择,首先得到一个给 定阈值的风险估计,选择风险最小的阈值 作为最终选择。(4> heursure :选择启发式阈值它是 sqtwolog 和rigrsure 的综合,当信噪比 很小时 , 估计有很大的噪声,这时 heursure, 采用固定阈值 sqtwolog 。2.3 阀值的选取阈值化处理的关键问题是选择合适的阈值如果阈值 (门限> 太小, 去噪后的 信号仍然有噪声存在。相反 , 如果太大 , 重要信号特征将被滤掉 ,引起偏差。从直 观上, 对于给定小波系数 ,噪声越大 , 阈值就越大。大多数阈值选择过程

15、是针对一 组小波系数 , 即根据本组小波系数的统计特性 ,计算出一个阈值。Donoho 等提出了一种典型阈值选取方法 ,从理论上给出并证明阈值与噪声 的方差成正比 , 其大小为:(2-4>3. 小波消噪的 MATLAB实现MATLA中B 的小波工具包提供了全面的小波变化及其应用的各种功能,其中 小波去噪方面实现 Donoho-Johnstone 等的去噪算法,而且可以选择使用图形界 面操作工具或者去噪函数集合两种形式,图形界面操作工具直观易用,而利用 函数集合可以实现更灵活强大的功能。我们利用小波去噪函数集合在中 MATLAB 作了一系列实验,充分体会到了小波去噪的强大功能。3.1 小波

16、去噪函数集合 下面是几个最为常用的小波去噪函数 14 :1> x=wnoise(fun,n>: 产生Donoho-Johnstone设计的 6种用于测试小波去噪效 果的典型测试数据,函数根据输入参数 fun 的值输出名为 “blocks”,“bumps”,“heavy”,“doppler”,“quadchirp ”或“mishmash”的 6种函数数据,数据长度为 2n。这6种测试数据在验证和仿真实 验时非常有用。2)xd,cxd,lxd=wden(x,tptr,sorh,scal,level,wname>:最主要的一维小波去噪函数。其中输入参数 为输入需要的信号, tptr

17、 为2.2 节中4种阀值形式, sorh设定为“ s”表示用软门限阀值或硬门限阀值处理。 2.2节中说过 4种阈 值形式是基于信号水平为 1的高斯白噪声模型推导得到的,当噪声不是白噪 声时,必须在小波分解的不同层次估计噪声水平, scal= “ one”不进行重新 估计, scal= “sln ”只根据第一层小波分解系数估计噪声水平 , scal= “mln”在每个不同的小 波分解层次估计噪声水平,根据 scal 参数的设定, wden<)函数决定最终应 用于每一个小波分解层次的阀值函数。最后两个参数 level 和wname表示利 用名为 wname的小波对信号分解结构 cxd,lxd

18、 。还有功能更强大的用于一 维或二维小波去噪或压缩的函数 wdencmp(>。3> thr=thselect(x,tptr>:去噪阀值选择函数。4> y=wthresh(x,sorh,t> :对信号 x 做阀值为 t 的门限阀值处理。3.2 小波去噪验证仿真实验信号是由 wnoise(> 函数产生的含标准的高斯白噪声信噪比为 3的heavy sine 信号,用 wden(>函数进行去噪处理 1516 .1>首先产生一个长度为 210点,包含高斯噪声的 heavy sine 信号及 heavy sine 含噪信号 , 其噪声标准差为 3 , 如图3

19、.1a 及b所示。2>利用 sym8'小波对信号分解,在分解的第 5层上,利用软阈值法去噪,结 果如图 3.1c 所示3>同样的条件下 , 利用固定阈值选择算法对信号去噪,结果如图 3.1d 所示<a)为原始信号 <b)为含噪信号 <c)为软阀值去噪信号 <d)为硬阀值去噪信号验证仿真程序如下:x=wnoise(3,10> 。ind=linspace(0,1,210> 。subplot(4,1,1> 。plot(x> 。title('(a>'> ;x,noisyx=wnoise(3,10,3,210

20、>subplot(4,1,2> 。plot(noisyx> 。title('(b>'> ;xd=wden(x,'rigrsure','s','sln',5,'sym8'>subplot(4,1,3> 。plot(xd> 。title('(c>'>xd=wden(x,'sqtwolog','h','sln',5,'sym8'> 。subplot(4,1,4> 。plo

21、t(xd> 。title('(d>'> ;通过以上的例子 , 可以看出对原始信号添加噪声后得到含噪信号 , 利用MATLAB 中的小波工具箱对含噪信号分别进行软阈值化和硬阈值化去噪处理 , 得出的去噪 结果与原始信号效果非常接近 , 由此可以看出利用 MATLAB中 的小波变换工具箱 对信号进行去噪处理是非常理想的。4. 小波去噪的 MATLAB仿 真对比实验选择 MATLAB6.5 中含有噪声的仿真信号 noisbloc 作为原始信号,分别使用 FFT 和小波分析方法对信号进行去噪处理,采用的小波是 sym8,分解层数为 5, 对比结果如图 4.1 。由图

22、4.1 可以看出,利用小波分析去噪的结果明显优于 Fourier 变换,这是由于 Fourier 变换只能在频域范围内表述,对系数进行处 理的方法也相对单一,而利用小波对信号进行分解后,可以采用多种计算阈值 和处理阈值的方法 . 对信号的噪声成分进行抑制,手段更加灵活。为了更加精 确地表示去噪结果,可以计算去噪后信号的信噪比 (RSN> 和均方根误差 ( RMS>E1718 。图 4-1 小波去噪和 FFT去噪效果对比图a为含噪信号图, b为软阀值去噪信号图, c 为硬阀值去噪图, d为FFT去噪图表4-1 几种方法去噪后的 RSN 和RMSErigrsuresqtwologFFT

23、SNR41.237637.638924.9344RMSE0.96001.14932.1692信号的信噪比越高,原始信号和去噪信号的均方根误差越小,去噪信号就越 接近原信号,去噪的效果也就越好。表 4.1 给出了 3种方法去噪后信噪比和均方 根误差的比较,可以看出,小波分析去噪结果的信噪比和均方根误差指标均优 于FFT。实验程序如下:load noisbloc 。x=noisbloc 。 subplot(2,2,1> 。plot(x> 。title('a'> xd=wden(x,'rigrsure','s','sln

24、9;,5,'sym8'> 。 subplot(2,2,2> 。plot(xd> 。title('b'> p1=1/length(x>*norm(x>2 。p2=1/length(x>*norm(x-xd>2 。 snr1=10*log(p1/p2> RMSE1=sqrtm(p2> xd=wden(x,'sqtwolog','h','sln',5,'sym8'> 。subplot(2,2,3> 。plot(xd> 。titl

25、e('c'> p1=1/length(x>*norm(x>2 。p2=1/length(x>*norm(x-xd>2 。 snr2=10*log(p1/p2> RMSE2=sqrtm(p2> wc=0.3。N=5。b,a=butter(N,wc> 。 xd=filter(b,a,x> 。 subplot(2,2,4> 。plot(xd> 。title('d'>。p1=1/length(x>*norm(x>2 。p2=1/length(x>*norm(x-xd>2 。

26、snr3=10*log(p1/p2>RMSE3=sqrtm(p2>结语小波去噪是一个正在研究的课题,新的方法在不断地提出。小波变换是一种 信号的时频分析方法,它具有多分辨率分析的特点,很适合探测正常信号中夹 带的瞬态反常现象并展示其成分,有效区分信号中的突变部分和噪声。因此利 用小波变换能有效的对信号进行消噪的同时提取含噪信号。用传统的傅立叶变 换分析,显得无能为力,因为傅立叶分析是将信号完全在频率域中进行分析, 它不能给出信号在某个时间点的变化情况,使得信号在时间轴上的任何一个突 变,都会影响信号的整个频谱。小波变换正广泛的应用于各个领域, MATLA给B 我们提供了一个很方便的

27、工作平台,通过 MATLA编B 制程序给定信号的噪声抑制 和非平稳信号噪声的消除。通过实例证明:基于小波变换的消噪方法是一种提 取有用信号、展示噪声和突变信号的优越方法,具有广阔的实用价值。参考文献1 Delyon B,Juditsky A,Benveniste A.Accuracy Analysis for Wavelet Approximat- ionJ.IEEE Transactions on Neural Networks,1995,(6> :320-350.2 Gregory B Pepus. 用Domino 开发Web 站点M. 北京: 机械工业出版社 , 1998.3 林昱, 钱昆. Lotus Domino R5 开发教程 M. 北京: 电子工业出版社 , 2001.4 冯锦峰 , 惠月 . Lotus Domino/Notes R5应用开发指南 M. 北京 : 北京希望电子出版社,2000. 7 刘贵忠 ,邸双亮 .小波分析及其应用 M. 西安:西安电子科技大学出版 社,1997

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论