因式分解掌握方法与技巧_第1页
因式分解掌握方法与技巧_第2页
因式分解掌握方法与技巧_第3页
因式分解掌握方法与技巧_第4页
因式分解掌握方法与技巧_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、因 式 分 解一、因式分解的技巧:1 .首选提取公因式法:即首先观察多项式中各项有没有公因式,若有,则先提 取公因式,再考虑其他方法。2 .当多项式各项无公因式或已提取公因式时,应考察各多项式的项数。(1)当项数为两项或可看作两项时,考虑利用平方差公式a2 b2= (a+ b) ( a b)。(2)当项数为三项时,可考虑完全平方公式、十字相乘法、求根公式法、配方法。(3)当项数为四项或四项以上时,可考虑分组分解法。a.当项数为四项时,可按公因式分组,也可按公式分组。b.当项数为四项以上时,可按次数分组,即可将次数相同的项各分为一组。3 .以上两种思路无法进行因式分解时,这时考虑展开后分解或拆(

2、添)项后 再分解。二.因式分解的方法:(一)提公因式法方法介绍:如果一个多项式的各项都含有公因式,那么就可以把这个公因 式提出来,从而将多项式化成两个因式乘积的形式。例 1. 一下;,"' "7分析:此多项式各项都有公因式x,因此可提取公因式 X。(二)应用公式法方法介绍:应用乘法公式,将其逆用,从而将多项式分解因式,如果是两项的考虑平方差公式,如果是三项的考虑用完全平方公式。例 2.产一一二:分析:此多项式看作两项,正好符合平方差公式,因此可利用平方差公式分解。解:原式= (x + 2y) + N-y)他+ 2y)-gy)例3.一冶 1K, 一1一,丁 一分析:此

3、多项式有三项,正好符合完全平方公式,因此考虑用完全平方公 式分解。解::一' 1 -''(三)分组分解法方法介绍:分组分解法是因式分解中的重要方法和技巧之一,分组的目的 是为提取公因式,应用乘法公式或其它方法创造条件,以便顺利地达到分解因 式的目的。下面介绍八种常见的思路:1 .按公因式分组:例 4. J,:二:! I分析:此题有四项,考虑将它们分组,其中第 1、2项有公因式m,第3、 4项有公因式p,可将它们分别分为一组。解:J 一 .: :一2 .按系数特点分组:例 5.-二分析:观察系数特点第一、二项和第三、四项的系数比为1:2,所以可考虑将第一、二项和第三、四项

4、分为一组,或第一、三项和第二、四项分为一组。解:- 13 .按字母次数特点分组:例 6.:小二' I'分析:此题有一次项,也有二次项,可将一次项分为一组,二次项分为一组。解:匕 一4 .按公式特点分组:例 7. 一,HL,,t ;-,.二1 ;分析:此题可将第2、3、4项分为一组,运用完全平方公式,再从整体上 运用平方差公式。解:J 一 , 二 -二5 .拆项分组:例 8. 一.,:'十 二;分析:为了便于运用乘法公式,可将-3拆成-4 + 1,再适当分组,达到因式分 解的目的。解 J一一.一'一'+:= (x-l)a -(y + 2)a=(K T) +

5、 (y + 2) (x -l)-(y + 2)'= fx-l + y + 2)x 1 y-2)二(x + y + l)x - y - 3)7 .换元分组:例9. -J: 一 二一:分析:观察代数式中的x+y , xy可考虑用换元法,使之结构简化,再分组解:设x + y =m, xy 二n ,则原式=(m-2Mm-2) + (口-1/-tn - 2mn - 2m + 4n + n - 2n + 1=fm2 - 2mli + n2) +(-2m + 2口) +1=(m - nj - 2(m - n) + 1=- n - I)2=(x +y - xy -= (xy-x) +(-y + l)2

6、= xy-l)-(y-l)a=(y 7(区=(厂1沁-1)”(四)待定系数法方法介绍:首先判断出分解因式的形式,然后设出相应整式的字母系数, 求出字母系数,从而把多项式因式分解。例10. 卡因:.J-;:一】分析:观察这个多项式没有一次因式,因而只能分解为两个二次因式解:二.一 ,二二(x i + ax + b)(区口 + ex + d=k* +(a+c)x5 +(ac + b + d)xa +(ad + bc)z+bd利用恒等式的性质可得:a + c = -1丁+d 丁解之得ad + bc = -6bd = -4 *a = 1b = 1c = -2d = -4 :,原式=(/ +x+ljir

7、 -2x-4(五)十字相乘法:ac方法介绍:对于 mx 2+px + q形式的多项式,如果 ab=m, cd=q + bd = p,则多项式可因式分解为:(ax + d) (bx + c)。例11.分解因丸7?-19x-6分析:这是一个三项式,它不符合完全平方公式,因此可考虑用十字相乘法分解因式:7v21-3 解:原式二(7x + 2)(x-3)(六)巧用换元法:方法介绍:对于较复杂的一些多项式,通过适当的换元,可达到减元降次, 化繁为简的目的。1.取相同部分换元例包. 一 一 :- - 1分析:若将上式展开,得到一个四次多项式,更加难分解了,如将 m2 5m看作一个整体,这样乘积得到的式子就

8、简化了。解:i:i.-:二 二- -T-"三、分解因式:1、X4 -2x3 -35x22、3x6 -3x23、25(x2y)24(2yx)24、x24xy1+4y25、x5 -x3,2,2,426、x 17、ax -bx bx+ax+b a8、x -18x +819、9x4 -36y210、(x+1)(x + 2)(x+3)(x+4)-24(1)(x + p)2 (x+ q)2;( 2)16(a b)2 9(a+ b)2 ;1. 2x2 -11x -21 = 2. 5x2 -7x - 6 =3. 15x2 x-2 =4. 6x2 - 25x 4 =5. x -4 x -5 -42 =

9、6. x -5 2 - 5 -x -42 =7. x2 -7x -30 =_2_ _2_ _2_ _ _2_ _8. 9x -30x 25 =9. 7x -19x-6 =10. -20x 9x 20 =11. 36x39x 9 =12.9x4-35x2 -4 =13. 9x4-37x2 +4 =14.7(x -1 )2+ 4(1 -x jy + 2)-20 y + 2)2=223._2. 2315. xy -2xy -3x - y - 2y -1 = 16. 20a bc - 9a b c - 20ab c =33.3 一 217. x 一2 x 一1)i:x 一2)i:x 一1 =18. a

10、 -4ab - a - 2b 二,2 22, 22219. 1 -a -b a b =20 x y-zy z-y =323.2.21. x - y)-4 x 7 a b =22. a b -ab -a1 =_33_222223. (x-1j(x+2)十(1x)(2+x)=24.x2y2 9x2 4y2+36 =2222225. a -2b -2a8b = 26. x - y 2yz- z =27. a4 -2a2b2 +b4 =28. (1-xyj -(x- y 2 =2.22229. a b c -2ab -2bc 2ac =30. 4 a b J -4a -4b 1 =222231. x

11、- y -2yz - z =32. a - ab - 2a b 1 = .22.2233. ab 2bc -ac -b -c =34. b - x a a 2b =22235. x 2xy -2x -2y 1 =36. xy -2xy - y x 2y -1 =一 222.2237. 4x y - a - b 4xy 2ab =38. x 14x 49 =22 239. 9x2 6x 1 =40. 9x2 -66x 121 ;2_2_241. -36x -1-12x=42. 9a - 24ab 16b =43. 25 x2 /xy 4 y2 =44. 9x2 -24xy2 16y4 =45. a4 +2a2b2 +b4 =46. (a + 2bf +10(a + 2b )+25 =47. 49(a-b 2-42(a-b X+9x2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论