2017年春八年级数学下册17勾股定理教案新人教_第1页
2017年春八年级数学下册17勾股定理教案新人教_第2页
2017年春八年级数学下册17勾股定理教案新人教_第3页
2017年春八年级数学下册17勾股定理教案新人教_第4页
2017年春八年级数学下册17勾股定理教案新人教_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十七章勾股定理教宇目标:«<17.1第1课时勾股定理勾股定理(1)了解勾股定理的发现过程, 应用勾股定理进行简单的计算.:«<理解并掌握勾股定理的内容,会用面积法证明勾股定理,能重点勾股定理的内容和证明及简单应用.难点勾股定理的证明.教宇设计:«<一、创设情境,引入新课让学生画一个直角边分别为再画一个两直角边分别为3cm和4cm的直角ABC用刻度尺量出斜边的长.5和12的直角ABG用刻度尺量出斜边的长.你是否发现了32+42与52的关系,52+122与132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直

2、角三角形也有这个性质吗?由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,地面图形,猜想毕达哥拉斯发现了什么?引导学生观察身边的拼图实验,探求新知1 .多媒体课件演示教材第2223页图17.12和图17.13,引导学生观察思考.2 .组织学生小组合作学习.问题:每组的三个正方形之间有什么关系?试说一说你的想法.引导学生用拼图法初步体验结论.生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.师:这只是猜想,一个数学命题的成立,还要经过我们的证明.归纳验证,得出定理b2=c2.(2)行证明.猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+是不是所

3、有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进到目前为止,对这个命题的证明已有几百种之多,卜面我们就看一看我国数学家赵爽是怎样证明这个定理的.用多媒体课件演示.小组合作探究:a.以直角三角形弦图的样子吗?ABC的两条直角边a,b为边作两个正方形,你能通过剪、拼把它拼成b.它们的面积分别怎样表示?它们有什么关系?c.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法.想一想还有什么方法?师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题讲解【例1

4、】填空题.在RtABC中,/C=90°,a=8,b=15,则c=;(2)在RtABC中,/B=90°,a=3,b=4,则c=;(3)在RtABC中,/C=90°,c=10,a:b=3:4,贝Ua=,b=;(4)一个直角三角形的三边为三个连续偶数,则它的三边长分别为;(5)已知等边三角形的边长为2cm1则它白高为cmi面积为cm2.【答案】(1)17(2)/(3)68(4)6,8,10(5),斓【例2】已知直角三角形的两边长分别为5和12,求第三边.分析:已知两边中,较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进行计算.让学生知道考虑问题要全面,体会分

5、类讨论思想.【答案】寸而或13三、巩固练习填空题.在RtABC中,ZC=90°.(1)如果a=7,c=25,贝Ub=;(2)如果/A=30°,a=4,则b=;(3)如果/A=45°,a=3,则c=;如果c=10,a-b=2,则b=;(5)如果a,b,c是连续整数,则a+b+c=;(6)如果b=8,a:c=3:5,贝Uc=.【答案】(1)24(2)43(3)32(4)6(5)12(6)10四、课堂小结1 .本节课学到了什么数学知识?2 .你了解了勾股定理的发现和验证方法了吗?3 .你还有什么困惑?教字反思本节课的设计关注学生是否积极参与探索勾股定理的活动,关注学生能

6、否在活动中积极思考、能够探索出解决问题的方法,能否进行积极的联想(数形Z合)以及学生能否有条理地表达活动过程和所获得的结论等.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理.第2课时勾股定理(2)能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点将实际问题转化为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实际问题.教学设计:«<、复习导入5米,至少需要问题1:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物多长的梯子?师生行为:学生分小组讨论,建立直角三角形的数学模型.教师深入到小组活动中,倾听学生的想法.生:根

7、据题意,(如图)AC是建筑物,则AC=12mBG=5miAB是梯子的长度,所以在RtABC中,AB2=aC+BC2=122+52=132,则AB=13m所以至少需13m长的梯子.师:很好!由勾股定理可知,已知两直角边的长分别为a,b,就可以求出斜边c的长.由勾股定理可得a2=c2b2或b2=c2-a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长.问题2:一个门框的尺寸如图所示,一块长3m宽2.2m的长方形薄木板能否从门框内通过?为什么?,4B-学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题

8、的途径.生1:从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.生2:在长方形ABCDK对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过.师生共析:解:在RtABC中,根据勾股定理AC=Ad+BC2=12+22=5.因此AC=J5=2.236.因为AC冰板的宽,所以木板可以从门框内通过.二、例题讲解【例1】如图,山坡上两棵树之间的坡面距离是4>/3米,则这两棵树之间的垂直距离是米,水平距离是米.分析:由/CAB=30。易知垂直距离为2M3米,水平距离是6米.【答案】2.36【例2】教材第25页例2三、巩固练习BC1 .如图,

9、欲测量松花江的宽度,沿江岸取B,C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,/B=60°,则江面的宽度为.【答案】50出米,520inC偏离欲到达地点 B 200米,2 .某人欲横渡一条河,由于水流的影响,实际上岸地点结果他在水中实际游了520米,求该河流的宽度.【答案】约480m四、课堂小结1 .谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形.2 .本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答.教字反思:«<这是一节实际应用课,过程中要充分发挥学生的主导性,鼓励学生动手、动脑,经历将实际问题转化为直角

10、三角形的数学模型的过程, 考的能力.激发了学生的学习兴趣,锻炼了学生独立思第3课时勾股定理(3)教字目标:«<1 .利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等.2 .利用勾股定理,能在数轴上找到表示无理数的点.3 .进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.:«<重点在数轴上寻找表示出,弧g这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.教学费计:«<一、复习导入复习勾股定理的内容.本节课探究勾股定理的综合应用.师:在八年级上册,我们曾经通过画图得到结论:斜边和

11、一条直角边对应相等的两个直角三角形全等.你们能用勾股定理证明这一结论吗?学生思考并独立完成,教师巡视指导,并总结.先画出图形,再写出已知、求证如下:已知:如图,在RtAABCDRtA'B'C'中,/C=/C'=90°,AB=AB',AC=AC求证:ABCAB'C'.证明:在RtABC和RtAA?B'C'中,/C/C'=90°,根据勾股定理,得BC=以行AC,B'C'=7AB,2_a,c,2.又ab=ab',aoAc',BBOB'C',/.AB

12、74;*AB'C'(SS§.师:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出行所对应的点吗?教师可指导学生寻找像长度为巾,木,木,这样的包含在直角三角形中的线段.师:由于要在数轴上表示点到原点的距离为V2,V3,V5,,所以只需画出长为爽,串小,的线段即可,我们不妨先来画出长为小,木,木,的线段.生:长为,2的线段是直角边都为1的直角三角形的斜边,而长为小的线段是直角边为1和2的直角三角形的斜边.师:长为诉的线段能否是直角边为正整数的直角三角形的斜边呢?生:设c=#3,两直角边长分别为a,b,根据勾股定理a2+b2=c2,即a2+b2=13.若

13、a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3,所以长为炉的线段是直角边长分别为2,3的直角三角形的斜边.师:下面就请同学们在数轴上画出表示声的点.生:步骤如下:1 .在数轴上找到点A,使。上3.2 .作直线l垂直于OA在l上取一点B,使AB=2.3 .以原点。为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示/的点.二、例题讲解【例1】飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?分析:根据题意,可以画出如图所示的图形,A点表示男孩头顶的位

14、置,C,B点是两个时刻飞机的位置,/C是直角,可以用勾股定理来解决这个问题.解:根据题意,得在RtABC中,/C=90°,AB=5000米,AC=4800米.由勾股定理,得Ad=AC2+BC,即50002=BC2+48002,所以BC=1400米.飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400X6X60=504000(米)=504(千米),即飞机飞行的速度为504千米/时.【例2】在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少?解:根据题意,得到上图,其中D是无风时水草的最高点

15、,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BCAD,所以在RtACB中,AB"=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36,.6AC=27,AC=4.5,所以这里的水深为4.5分米.【例3】在数轴上作出表示质的点.解:以西为长的边可看作两直角边分别为4和1的直角三角形的斜边,因此,在数轴上画出表示匹的点,如下图:心丁.OI234C师生行为:由学生独立思考完成,教师巡视指导.此活动中,教师应重点关注以下两个方面:学生能否积极主动地思考问题;能否找到斜边为肝,另外两条直角边为整数的直角三角形.三、课堂小结1 .

16、进一步巩固、掌握并熟练运用勾股定理解决直角三角形问题.2 .你对本节内容有哪些认识?会利用勾股定理得到一些无理数,并理解数轴上的点与实数一一对应.教学反思本节课的教学中,在培养逻辑推理的能力方面,做了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续,注重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到课堂教学当中,很好地激发了学生学习数学的兴趣,培养了学生善于提出问题、敢于提出问题、解决问题的能力.17.2勾股定理的逆定理第1课时勾股定理的逆定理(1)敦亨目麻1 .掌握直角三角形的判别条件.2 .熟记一些勾股数.3 .掌握勾股定理的逆定理的探究方法.

17、重点探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系.难点归纳猜想出命题2的结论.数学设计一、复习导入活动探究(1)总结直角三角形有哪些性质;4 2)一个三角形满足什么条件时才能是直角三角形?生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余;(3)两直角边的平方和等于斜边的平方;(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的师:那么一个三角形满足什么条件时,才能是直角三角形呢?生1:如果三角形有一个内角是90。,那么这个三角形就为直角三角形.生2:如果一个三角形,有两个角的和是90°,那么这个三角形也是直

18、角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b与斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的?问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.这个问题意味着,如果围成的三角形的三边长分别为3,4,5,有下面的关系:32+422=5,那么围成的三角形是直角三角形.画画看,如果三角形的三边长分别为2.5cm6cmj6.5cmj有下面白关系:2.52+62=6.52,画出

19、的三角形是直角三角形吗?换成三边分别为4cmj7.5cm8.5cm再试一试.生1:我们不难发现上图中,第1个结到第4个结是3个单位长度即AO3;同理BC=4,AB=5.因为32+42=52,所以我们围成的三角形是直角三角形.生2:如果三角形的三边长分别是2.5cm6cir6.5cm我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52+62=6.52.再换成三边长分别为4cm,7.5cm,8.5cm的三角形,可以发现8.5cm的边所对的角是直角,且有42+7.52=8.52.师:很好!我们通过实际操作,猜想结论.命题2如果三角形的三边长a,b,c满足a2+b

20、2=c2,那么这个三角形是直角三角形.再看下面的命题:命题1如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.它们的题设和结论各有何关系?师:我们可以看到命题2与命题1的题设、结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个叫做它的逆命题.例如把命题1当成原命题,那么命题2是命题1的逆命题.二、例题讲解【例1】说出下列命题的逆命题,这些命题的逆命题成立吗?(1)同旁内角互补,两条直线平行;(2)如果两个实数的平方相等,那么这两个实数相等;(3)线段垂直平分线上的点到线段两端点的距离相等;(4)直角三角形中30°角所对的直

21、角边等于斜边的一半.分析:(1)每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用;(2)理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.解略.三、巩固练习教材第33页练习第2题.四、课堂小结师:通过这节课的学习,你对本节内容有哪些认识?:«<教字反思学生发言,教师点评.本节课的教学设计中,将教学内容精简化,实行分层教学.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,

22、感受探索、合作的乐趣,并从中获得成功的体验,真正体现学生是学习的主人.将目标分层后,满足不同层次学生的做题要求,达到巩固课堂知识的目的.第2课时勾股定理的逆定理(2)敦亨目麻:«<1 .理解并掌握证明勾股定理的逆定理的方法.2 .理解逆定理、互逆定理的概念.重鬲难后:«<重点勾股定理的逆定理的证明及互逆定理的概念.难点理解互逆定理的概念.教宇费计:«<一、复习导入师:我们学过的勾股定理的内容是什么?生:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.师:根据上节课学过的内容,我们得到了勾股定理逆命题的内容:如果三角形的

23、三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.师:命题2是命题1的逆命题,命题1我们已证明过它的正确性,命题2正确吗?如何证明呢?师生行为:让学生试着寻找解题思路,教师可引导学生理清证明的思路.师:ABC的三边长a,b,c满足a2+b2=c2.如果4ABC是直角三角形,它应与直角边是a,b的直角三角形全等,实际情况是这样吗?我们画一个直角三角形AB'C',使BC'=a,A'C'=b,/C'=90°(如图),把画好的A'B'C'剪下,放在ABC上,它们重合吗?生:我们所画的RtA'B&#

24、39;C',(A'B')2=a2+b2,又因为c2=a2+b2,所以(A'B'):=c2,即AB,=c.ABC和AA'B'C'三边对应相等,所以两个三角形全等,/C=/C'=90。,所以ABC为直角三角形.即命题2是正确的.师:很好!我们证明了命题2是正确的,那么命题2就成为一个定理.由于命题1证明正确以后称为勾股定理,命题2又是命题1的逆命题,在此,我们就称定理2是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.师:但是不是原命题成立,逆命题一定成立呢?生:不一定,如命题“对顶角相等”成立,它的逆命题“如果两个角相等,那么它们是对顶角”不成立.师:你还能举出类似的例子吗?生:例如原命题:如果两个实数相等,那么它

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论