




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2018年广东省广州市中考数学试卷(含答案解析)2018年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的)1. (3分)(2018?广州)四个数0,1,v2,1中,无理数的是()2A.乂B.1C.2D.02. (3分)(2018?广州)如图所示的五角星是轴对称图形,它的对称轴共有()A. 1条B. 3条C. 5条D.无数条3. (3分)(2018?广州)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是()A.C.D.A.Z4,Z2B./2,/6C./5,/4D.Z2,Z46. (3分)(2018?广州)甲
2、袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.-B.-C.-D.-23467. (3分)(2018?广州)如图,AB是。的弦,OCLAB,交。于点C,连接OAOBBG若/ABC=20,则/AOB的度数是()A.40°B.500C.700D.8010?+ ?= 8?+ ? 9?+ 13 = 11?8. (3分)(2018?广州)九章算术是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意
3、思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()11?=9?A,(10?+?)-(8?+?)=1389?=11?9?=11?C.(8?+?)-(10?+?)=13D'(10?+?)-(8?+?)=13?-?一,,.,9. (3分)(2018?广州)一次函数y=ax+b和反比例函数y=?在同一直角坐标系中的大致图象是()10. (3分)(2018?广州)在平面直角坐标系中,一个智能机器人接到如下指令
4、:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m其行走路线如图所示,第1次移动到A,第2次移动到A2,,第n次移动到A则OAA2018的面积是()2A. 504mB 1009 m2C.10112m2 D. 1009m二、填空题(本大题共6小题,每小题3分,满分18分.)11. (3分)(2018?广州)已知二次函数y=x2,当x>0时,y随x的增大而(填“增大”或“减小”).12. (3分)(2018?广州)如图,旗杆高AB=8m某一时刻,旗杆影子长BC=16mtanC=.13. (3分)(2018?广州)方程1 4 ?+6的解是14. (3分)(2018?广州)
5、如图,若菱形ABCD勺顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是.15. .(3分)(2018?广州)如图,数轴上点A表示的数为a,化简:a+讨?-4?+4=.16. (3分)(2018?广州)如图,CE是?ABCD勺边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AGBE,DQDO与AC交于点F,则下列结论:四边形ACBE1菱形;/ACDWBAEAF:BE=23;S四边形AFOUSaco=2:3.其中正确的结论有.(填写所有正确结论的序号)三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)1+?艮017. (
6、9分)(2018?广州)解不等式组:2?-K318. (9分)(2018?广州)如图,AB与CD相交于点E,AE=CEDE=BE求证:/A=/C.19. (10分)(2018?广州)已知?吊-9T=?(?+32+?(?+3)(1)化简T;(2)若正方形ABCD勺边长为a,且它的面积为9,求T的值.20. (10分)(2018?广州)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是,众数是;
7、(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.21. (12分)(2018?广州)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.22. (12分)(2018?广州)设P(x,0
8、)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;一_?.(2)右反比例函数丫2=-的图象与函数y1的图象相父于点A,且点A的纵坐标为?2.求k的值;结合图象,当y1>y2时,写出x的取值范围.23. (12分)(2018?广州)如图,在四边形ABCD,/B=/C=9(J,AB>CDAD=AB+CD(1)利用尺规作/ADC的平分线DE交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,证明:AE1DE;若CD=ZAB=4点MN分别是AE,AB上的动点,求BM+MI®最小值.24. (14分)(2018?
9、广州)已知抛物线y=x2+mx2m4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在。P上.试判断:不论m取任何正数,OP是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;若点C关于直线x=-?的对称点为点E,点D(0,1),连接BE,BRDE,.?.BDE的周长记为l,OP的半径记为r,求-的值.25. (14分)(2018?广州)如图,在四边形ABCDfr,/B=60°,/D=30,AB=BC(1)求/A+/C的度数;(2)连接BD,探究ARBRCD
10、三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABC师部运动,且满足AS=BE+CE,求点E运动路径的长度.2018年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的)1. (3分)(2018?广州)四个数0,1,v2,2中,无理数的是()A.乂B.1C.2D.0【考点】26:无理数;22:算术平方根.【专题】511:实数.【分析】分别根据无理数、有理数的定义即可判定选择项.1-【解答】解:0,1,£是有理数,是无理数,故选:A.【点评】此题主要考查了无理数的定义,注意带根
11、号的要开不尽方才是无理数,无限不循环小数为无理数.如冗,v6,0.8080080008(每两行之间依次多1个0)等形式.2. (3分)(2018?广州)如图所示的五角星是轴对称图形,它的对称轴共有()A.1条B.3条C.5条D.无数条【考点】P3:轴对称图形.【专题】1:常规题型.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:五角星的对称轴共有5条,故选:C.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.4个相同的小正方体搭成的,它3. (3分)(2018?广州)如图所示的几何体是由的主视
12、图是()A.C.B.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4. (3分)(2018?广州)下列计算正确的是()A.(a+b)2=a2+b2B.a2+2a2=3a4C.x2y-=x2(yw0)D.(-2x2)3=-8x6【考点】6B:分式的加减法;35:合并同类项;47:幕的乘方与积的乘方;4C:完全平方公式.【专题】11:计算题.【分析】根据相关的运算法则即可求出答案.【解答】
13、解:(A)原式=a2+2ab+b2,故A错误;(B)原式=3a2,故B错误;(C)原式=x2y2,故C错误;故选:D.【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.5. (3分)(2018?广州)如图,直线ARBE被直线BF和AC所截,则/1的同位角和/5的内错角分别是(A. /4, /2B. /2, /6C. /5, /4D. /2, /4【考点】J6:同位角、内错角、同旁内角.【专题】55:几何图形.【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.根据内错
14、角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角进行分析即可.【解答】解:/1的同位角是/2,/5的内错角是/6,故选:B.【点评】此题主要考查了三线八角,关键是掌握同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U'形.6. (3分)(2018?广州)甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()1A.一21B.-31C. 一41 D.-6【考点】X6:列表法与树状图法.【专题】
15、1:常规题型.【分析】直接根据题意画出树状图,再利用概率公式求出答案.【解答】解:如图所示:开始I,、2AA一共有4种可能,取出的两个小球上都写有数字2的有1种情况,一,八,二一一,一1故取出的两个小球上都写有数字2的概率是:-4故选:C.【点评】此题主要考查了树状图法求概率,正确得出所有的结果是解题关键.7. (3分)(2018?广州)如图,AB是。的弦,OCLAB,交。于点C,连接OAOBBG若/ABC=20,则/AOB的度数是()CA.40°B.50°C.700D.80°【考点】M5圆周角定理;M2垂径定理.【专题】55:几何图形.【分析】根据圆周角定理得出
16、/AOC=40,进而利用垂径定理得出/AOB=80即可.【解答】解:.一/ABC=20,./AOC=40,.AB是。的弦,OCLAB,丁./AOC=BOC=40,AOB=8°,0故选:D【点评】此题考查圆周角定理,关键是根据圆周角定理得出/AOC=40.8. (3分)(2018?广州)九章算术是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等交易其一,金轻十三两问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计)问黄金、
17、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()10?+ ?= 8?+ ? 9?+ 13 = 11?9?= 11? (10?+ ?)- (8?+ ?)= 1311?=9?A(10?+?)-(8?+?)=13B9?=11?cd(8?+?)-(10?+?)=13【考点】99:由实际问题抽象出二元一次方程组【专题】1:常规题型【分析】根据题意可得等量关系:9枚黄金的重量=11枚白银的重量;(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)二13两,根据等量关系列出方程组即可【解答】解:设每枚黄金重x两,每枚白银重y两,由题意得:9?=11?(10?+?)-(
18、8?+?)=13,故选:D【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.?-?一9. (3分)(2018?广州)一次函数y=ax+b和反比例函数y=?在同一直角坐标系中的大致图象是()【考点】G2反比例函数的图象;F3:一次函数的图象.【专题】1:常规题型.【分析】先由一次函数的图象确定a、b的正负,再根据a-b判断双曲线所在的象限.能统一的是正确的,矛盾的是错误的.【解答】解:当y=ax+b经过第一、二、三象限时,a>0、b>0,由直线和x轴的交点知:->-1,IPb<a,.-.a-b>0,?所以双曲线在第一、三
19、象限.故选项B不成立,选项A正确.当y=ax+b经过第二、一、四象限时,a<0,b>0,此时a-b<0,双曲线位于第二、四象限,故选项C、D均不成立;故选:A.【点评】本题考查了一次函数、反比例函数的性质.解决本题用排除法比较方便.10. (3分)(2018?广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m其行走路线如图所示,第1次移动到Ai,第2次移动到A,第n次移动到A则OAA2018的面积是()A.504mB.1009m2C.1011m2D.1009m22【考点】D2:规律型:点的坐标.【专题】
20、2A:规律型;531:平面直角坐标系.【分析】由OAn=2n知。为声2016。据止匕得出A2A018=10091=1008,据2此利用三角形的面积公式计算可得.【解答】解:由题意知OAn=2n,2018+4=504-2,A2A2018=10091=1008,贝UOAA2018的面积是1X1X1008=504m,2故选:A.【点评】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.二、填空题(本大题共6小题,每小题3分,满分18分.)11. (3分)(2018?广州)已知二次函数y=x2,当x>0时,y随x的增大而增大(填“增大”或“
21、减小”).【考点】H3:二次函数的性质.【专题】1:常规题型.【分析】根据二次函数的二次项系数a以及对称轴即可判断出函数的增减性.【解答】解:二二次函数y=x2,开口向上,对称轴为y轴,.二当x>0时,y随x的增大而增大.故答案为:增大.【点评】本题主要考查了二次函数的性质,解答本题的关键是求出二次函数的对称轴为y轴,开口向上,此题难度不大.12. (3分)(2018?广州)如图,旗杆高AB=8m某一时刻,旗杆影子长BC=16mtanC=7.2【专题】55:几何图形.【分析】根据直角三角形的性质解答即可.【解答】解::旗杆高AB=8m旗杆影子长BC=16m? tanC=?81612,,i
22、故答案为:-2【点评】此题考查解直角三角形的应用,关键是根据正切值是对边与邻边的比值解答.13. (3分)(2018?广州)方程1=的解是x=2.?+6【考点】B3:解分式方程.【专题】11:计算题;522:分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+6=4x,解得:x=2,经检验x=2是分式方程的解,故答案为:x=2【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14. (3分)(2018?广州)如图,若菱形ABCD勺顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,
23、则点C的坐标是(-5,4).第20页(共40页)【考点】L8:菱形的性质;D5:坐标与图形性质.【专题】556:矩形菱形正方形.【分析】利用菱形的性质以及勾股定理得出DO勺长,进而求出C点坐标.【解答】解:二.菱形ABCD勺顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上, .AB=5 .AD=5 由勾股定理知:OdJ?-?=v52-32=4, 点C的坐标是:(-5,4).故答案为:(5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO勺长是解题关键.15.(3分)(2018?广州)如图,数轴上点A表示的数为a,化简:a+姬?-4?+4=0门?【考点】73:二次
24、根式的Tt质与化简;29:实数与数轴.【专题】1:常规题型.【分析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.【解答】解:由数轴可得:0<a<2,则a+a/?-4?+4=a+“2-?)=a+(2-a)=2.故答案为:2.【点评】此题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题关键.16.(3分)(2018?广州)如图,CE是?ABCD勺边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AGBE,DQDO与AC交于点F,则下列结论:四边形ACBE1菱形;/ACDWBAEAF:BE=23;S四边形AFOUSaco=2:3.其中正确的结论
25、有.(填写所有正确结论的序号)【考点】S9:相似三角形的判定与性质;KG线段垂直平分线的性质;L5:平行四边形的性质;LA:菱形的判定与性质.【专题】555:多边形与平行四边形.【分析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可;【解答】解:二四边形ABC此平行四边形,.AB/CDAB=CDvEC垂直平分AB,oa=ob=ab=1dccelce,vOA/DG.?1.?2'AE=ADOE=OCOA=OBOE=OC一四边形ACBEt平行四边形,.AB,EC,一四边形ACBEt菱形,故正确,vZDCE=90,DA=AEAC=AD=AE丁/ACDWADC=
26、BAE故正确,vONCR?二=一、?2?1?3,故错误,设AOF勺面积为a,则OFC勺面积为2a,CDF勺面积为4a,AOC勺面积二AOE勺面积=3a,一四边形AFOE勺面积为4a,ODC勺面积为6aS四边形afoESaco=2:3.故正确,故答案为.【点评】本题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考常考题型.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)1+?艮017. (9分)(2018?广州)解不等式组:.l2?-K3【考点】CR解一元一次不
27、等式组.【专题】524:一元一次不等式(组)及应用.【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案.1+?艮0【解答】解:,2?-1<3解不等式,得x>-1,解不等式,得x<2,不等式,不等式的解集在数轴上表示,如图I>-5-43-2-1012345原不等式组的解集为-1<x<2.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.18. (9分)(2018?广州)如图,AB与CD相交于点E,AE=CEDE=BE求证:/A=/C.【考点】KD全等三角形的判定与性质.【专题】552:三角形.【分析】根据AE=ECDE=
28、BE/AEDffi/CEB是对顶角,禾用SAS证明AADEi第25页(共40页)CBEW可.【解答】证明:在4人£于口ZXCEB中,?/?/?=?.AEDACEB(SAS,/A=ZC(全等三角形对应角相等).【点评】此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.?吊-9619.(10分)(2018?广州)已知t=?e+?而)(1)化简T;(2)若正方形ABCD勺边长为a,且它的面积为9,求T的值.【考点】6D:分式的化简求值.【专题】11:计算题;513:分式.【分析】(1)原式通分并利用同分母分式的加法法则计算即可求出值;(2)由
29、正方形的面积求出边长a的值,代入计算即可求出T的值.船农解.T?和9+6(?+3)=(?+3)2己'T?(?+32?(?+32?(?+32?(2)由正方形的面积为9,得到a=3,1则鸟【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(10分)(2018?广州)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是16,众数是17;(2)计算这10位居民一周内使用共
30、享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.【考点】W5众数;V5:用样本估计总体;W4中位数.【专题】11:计算题;541:数据的收集与整理.【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;(3)用样本平均数估算总体的平均数.【解答】解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)+2=16,17出现3次最多,所以众数是17,故答案是16,17;(2)26)=14,1x(0+7+9+12+15+17
31、X3+20+101答:这10位居民一周内使用共享单车的平均次数是14次;(3)200X14=2800答:该小区居民一周内使用共享单车的总次数为2800次.第27页(共40页)【点评】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错21.(12分)(2018?广州)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售某公司一次性从友
32、谊商店购买A型号笔记本电脑x台(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围【考点】C9一元一次不等式的应用.【专题】12:应用题【分析】(1)根据两个方案的优惠政策,分别求出购买8台所需费用,比较后即可得出结论;(2)根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论【解答】解:设购买A型号笔记本电脑x台时的费用为w元,(1)当x=8时,方案一:w=90%a8=7.2a,方案二:w=5a+(8-5)aX80%=7.4a,二当x=8时,应选择方案一,该公司购买费用最少,最少费用
33、是7.2a元;(2)二.若该公司采用方案二购买更合算,x>5,方案一:w=90%ax=0.9ax方案二:当x>5时,w=5a+(x-5)ax80%=5a+0.8ax-4a=a+0.8ax,0.9ax>a+0.8ax,x>10,;x的取值范围是x>10.【点评】本题考查了一元一次不等式的应用,解题的关键是:(1)根据优惠方案,列式计算;(2)找准不等量关系,正确列出一元一次不等式.22. (12分)(2018?广州)设P(x,0)是x轴上的一个动点,它与原点的距离为yi.(1)求yi关于x的函数解析式,并画出这个函数的图象;一?(2)右反比例函数y2二?勺图象与函数
34、y1的图象相父于点A,且点A的纵坐标为2.求k的值;结合图象,当y1>y2时,写出x的取值范围.【考点】G6反比例函数图象上点的坐标特征;G4:反比例函数的性质.【专题】534:反比例函数及其应用.【分析】(1)写出函数解析式,画出图象即可;(2)分两种情形考虑,求出点A坐标,利用待定系数法即可解决问题;利用图象法分两种情形即可解决问题;【解答】解:(1)由题意yi=|x|函数图象如图所示:(2)当点A在第一象限时,由题意A(2,2),?2=,2k=4.同法当点A在第二象限时,k=-4,观察图象可知:当k>0时,x>2时,yi>y2或x<0时,yi>y2&g
35、t;.当k<0时,x<一2时,y1>y2或x>0时,y1>y2.【点评】本题考查反比例函数图象上点的特征,正比例函数的应用等知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.23. (12分)(2018?广州)如图,在四边形ABCDfr,/B=/C=90,AB>CDAD=AB+CD(1)利用尺规作/ADC的平分线DE交BC于点E,连接AE(保留作图痕迹,第30页(共40页)不写作法);(2)在(1)的条件下,证明:Ande若CD=ZAB=4点MN分别是AE,AB上的动点,求BM+MI®最小值.【考点】N2:作图一基本作图;PA轴对称-最短
36、路线问题.【专题】555:多边形与平行四边形.【分析】(1)利用尺规作出/ADC勺角平分线即可;(2)延长DE交AB的延长线于F.只要证明AD=AFDE=EF利用等腰三角形三线合一的性质即可解决问题;作点B关于AE的对称点K,连接EK,作KHLAB于H,DGLAB于G.连接MK由MB=MK推出MB+MN=KM+MN据垂线段最短可知:当K、MN共线,且与KH重合时,KM+MNKfi最小,最小值为GH的长;【解答】解:(1)如图,/ADC勺平分线DE如图所示.(2)延长DE交AB的延长线于F.vCDAF, ./CDEWF,/CDEWADE /ADF之F,AD=AFvAD=AB+CD=AB+,BFC
37、D=BF/DECWBEF.DECAFEBDE=EFvAD=AFAE!DE作点B关于AE的对称点K,连接EK,彳KHLAB于H,DGLAB于G连接MKvAD=AFDE=EFAE平分/DAF则AE任AAEBAK=AB=4在ADGfr,DG/?-?仔4V2,vKH/DG?44V26.KH”3vMB=MKMB+MN=KM+MN当K、MN共线,且与KH重合时,KM+MINKS最小,最小值为GH的长,.BM+MI®最小值为8适.3【点评】本题考查作图-基本作图,轴对称最短问题,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用轴
38、对称解决最短问题,属于中考常考题型.24.(14分)(2018?广州)已知抛物线y=x2+mx2m4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在。P上.试判断:不论m取任何正数,OP是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;若点C关于直线x=-?的对称点为点E,点D(0,1),连接BE,BRDE,?.BDE的周长记为l,OP的半径记为r,求朋化【考点】HF:二次函数综合题.【专题】15:综合题.【分析】(1)令y=0,再求出判别式,判断即可得出结论;(
39、2)先求出0A=2OB=m+2OC=2(m+2,1判断出/OCBOAE求出tanZOCB=,即可求出OF=1即可得出结论;先设出BD二卬再判断出/DCE=90,得出DE是。P的直径,进而求出BE=2npDE=vm,即可得出结论.【解答】解:(1)令y=0,2x+mx-2m-4=0,oo=m-4-2rrr4=m+8m+1§m>0,.>0,该抛物线与x轴总有两个不同的交点;(2)令y=o,2x+mx-2m-4=0,(x-2)x+(m+2=0,x=2或x=-(m+2,A(2,0),B(-(m+2,0),OA=?OB=m+2令x=0,y=-2(m+2, .C(0,-2(m+2), .OC=2(m+2,通过定点(0,1)理由:如图, 点A,B,C在。P上, ./OCB=OAF在RtABOOt,tan/OCB=?=?+2=1,?2(?+2)2在AOF中,tan/OAF=-?=-?=1-,?22OF=1 点F的坐标为(0,1);如图1,由知,点F(0,1), D(0,1),点D在。P上,点E是点C关于抛物线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市输电线路工程质量通病防治措施
- 2025年风湿免疫科类风湿关节炎诊断标准模拟考试答案及解析
- 2025年电子真空器件行业需求分析及创新策略研究报告
- 2025年整形外科美容术操作风险评估模拟考试答案及解析
- 矿山吊装设备安全风险分析与措施
- (2025年标准)甲方义务授权协议书
- 智能微流控检测-洞察及研究
- 环境保护工程施工进度计划保证措施
- 2025年疼痛科疼痛管理方案制定答案及解析
- 2025年椰子汁行业当前竞争格局与未来发展趋势分析报告
- 城市低空安全监管平台解决方案
- 超市安全知识培训内容
- 银行招聘职业能力测验-2025中国银行春招笔试考题
- 旅游行业导游培训制度与措施
- 初二学生入学教育
- 九年级《开学第一课》课件
- 数据标注培训课件
- 《视觉表现技巧》课件
- 主动脉夹层临床医学专业教学系列课件讲解
- 天津市河北区2024-2025学年九年级上学期12月月考数学试题(含答案)
- 五社联动推进基层治理现代化
评论
0/150
提交评论