北师大八年级不等式培优_第1页
北师大八年级不等式培优_第2页
北师大八年级不等式培优_第3页
北师大八年级不等式培优_第4页
北师大八年级不等式培优_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一章一元一次不等式和一元一次不等式组【知识总结】一.不等关系派1.一般地,用符号“<”(或),“>"(或 7 )连接的式子叫做不等式.。2.要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.派3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <=>大于等于0( >0) <=>0和正数 <=> 不小于0非正数 <=>小于等于0( 0 0) <=>0和负数 <=>不大于0二.不等式的基本性质派1.掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加

2、上(或减去)同一个整式,不等号的方向不变,即:如果 a>b,那么 a+c>b+c,a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,- >-. c c(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:a b如果a>b,并且c<0,那么ac<bc,- <c c三.不等式的解集:派1.能使不等式成立的未知数的值,叫做丕笑式的解二一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解丕笑式一.X2.不等式的解可以有无数多个,一般是

3、在某个范围内的所有数,与方程的解不同.。3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:边界:有等号的是实心圆圈,无等号的是空心圆圈;方向:大向右,小向左四.一元一次不等式:派1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.像这样的不等式叫做一元二一次不等式X2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.X 3.解一元一次不等式的步骤:去分母;去括号;移项;合并同类项;系数化为1(不等号的改变问题)X 4.一元一次不等式基本情形为 ax>b(或ax<b)当a>0时,解为x

4、>B;a当a=0时,且b<0,则x取一切实数;当a=0时,且b 0,则无解;当a<0时,解为x<B; a五.一元一次不等式组X 1.定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做二元二次丕笠式组.派2.一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定.X 3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且a&l

5、t;b)一7次不等式解集图示叙述语百表达x>b两大取较大x>a两小取小a<x<b大小交叉中间找无解在大小分离没有解(是空集)【培优训练】一、选择题(每小题3分,共30分)1.下列不等式一定成立的是() 4 2A.5a>4aB.x+2<x+3C. a> 2a D._ >_a a2.不等式3x+6>0的正整数有()A.1个 B.2个C.3个D.无数多个3.在数轴上与原点的距离小于8的点对应的x满足()A.-8<x< 8B.x< 8 或 x>8C.x<8D.x>8r4若不等式组1xm无解,则m的取值范围是()

6、x >11JA.m< 11B.m> 11C.m< 11D.m>11 5要使函数y=(2m3)x+(3n+1)的图象经过x、y轴的正半轴,则m与n的取值应为()n >3A.m> , n> B.m>3,n> 3C.m< 一, n< D.m< 一,232326 .如右图,当y<0时,自变量x的范围是()A、x -2 B、x2 C、x 2 D> x 27 .如果0 <x <1 ,则下列不等式成立的()21211212A、x < x < B、x <x< C、一 <x<

7、x D、 < x < xxx xx8 .若a>b>0,则下列结论正确的是()11 _ 322(A)-a>-b(B) 一(C)a <0(D)a >ba b9 .某射击运动员在一次比赛中前6次射击共中52环,如果他要打破 89环(10次射击)的记录,第七次射击不能少于()环(每次射击最多是10环)A、 5B、 6C、 7D、 810 .初三的几位同学拍了一张合影作留念,已知冲一张底片需要 0.80元,洗一张相片需要 0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数.A.至多 6人 B .至少 6

8、人 C .至多 5人 D .至少 5人2 x11 .不等式组3 的最小整数解为()3x-4 <8(A)1(B)0(C)1(D)412、如果0 < x <1 ,则下列不等式成立的()21211212A、x < x < B、 x <x< C、一 <x<x D、 < x < xxx xx13、在平面直角坐标系内,点P(m3, m -5)在第四象限,则m的取值范围是()a、5<m<3b、3<m<5C、3<m<5d、5<m<3二、填空题:(每题 3分,共15分)一.| x -1 |1、若|

9、= 1 ,则x的取值范围是x -12、如果关于x的不等式(a -1)x <a+5和2x <4的解集相同,则a的值为.3、若a<b,用或“>”号填空:2a.4、点A ( 5,必)、B(2, y2)都在直线 y = 2x上,则yi与y2的关系是。5、若不等式组2xac1一 一的解集为1 < x <1 ,那么(a 3)(b+3)的值等于 x2b >36、不等式ax a b的解集是x,2x1.2三、解不等式(组)(每题5分)5x -6 <2(x 3)(1). x x -3- -1一43x - 5 < -3(3).2x -22x1(4)35x -1

10、3(x1)四、解答题(1)3V x< a+2 ,则a的取值范围a -1 : x : a 2,不等式组,的解集是3 : x 5.(2)2x-1若关于x的不等式组3 3x -1.,的解集为x<2 ,求k的取值范围(3)x : m 1,若不等式组 无解,x 2m -1求m的取值范围(4)已知关于x, y的方程组x + y = my的解为非负数,求整数m的值5x+3y =31(5)画出函数y=3x+12的图象,并回答下列问题:(6分)当x为什么值时,y>0?(2)如果这个函数y的值满足一6&y&6,求相应的x的取值范围.一、一,r'2x+y=1 m,1,、一

11、八(6)已知方程组 J的解x、y满足x+y>0,求m的取值氾围.(6分)、x +2y =2四.应用题某汽车租赁公司要购买轿车和面包车共10辆.其中轿车至少要购买 3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(10分)(1)符合公司要求的购买方案有哪几种?请说明理由.(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元.假设新购买的这 10辆车每日都可租出,要使这10辆车的日租金收入不低于1500元,那么应选择以上哪种购买方案?考点1不等式(1)不等式的概念:用不等号表示不等关系的式子叫做不等式。(2)不等式的解、解集能使不等式成立的未知数的值叫

12、做不等式的解;一个含有未知数的不等式的解的全体叫做这个不等式的解集。不等式的解集包括不等式的每一个解。(3)解不等式:求不等式的解集的过程叫做解不等式。与解方程一样,解不等式的过程,就是要将不等式变形为ax>0或ax<0的形式。(4)不等式的“解”和“解集”的区别与联系不等式的解是指在某一范围内的数,用它代替不等式中的未知数,不等式成立;不等式的解集是一个含有未知数的不等式的所有解组成的集合;不等式的解集是一个范围,在这个范围内的每一个值都是不等式的一个解;不等式的解和不等式的解集是两个不同的概念:不等式的解是满足这个不等式的未知数的某个值,而不等式的解集是指满足这个不等式的未知数

13、的所有的值,解集中包含了每一个解。(5)不等式解集的表示方法用不等式表示不等式的解集,常见的形式有以下四种:用数轴表示不等式的解集,主要注意“两定”,即:一定“边界点”;二定“方向”。若含边界点,解集为实心点;若不含边界点,解集为空心圆圈。对于方向,相对于边界点而言,大于向右,小于向左。用数轴表示不等式的解集,通常分三个步骤进行:i)画数轴;ii)定边界点;而)定方向。(6)不等式的性质不等式的性质1不等号的两边都加上(或减去)同一个数或同一个整式,不等号不等式的性质2:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变。不等式的性质3不等式的两边同时乘以(或除以)同一个负数,不等号的

14、方向改变。即:(7)不等式的对称性和传递性对称性:传递性:考点2 一元一次不等式(1) 一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不等于 0,这样的不等式叫做一元一次不等式。一元一次不等式与一元一次方程在定义上类似。不同的是,前者是用“>”或“”连接两个整式,后者是用“=连接两个整式。(2)解一元一次不等式的一般步骤去分母(根据不等式的性质2)去括号(根据整式的运算法则)移项(根据不等式的性质1)合并同类项(根据整式的运算法则)将系数化为1 (根据不等式的性质 2)(3)列一元一次不等式解应用题的步骤审题:理解问题中的数量关系及对解答的要求;设未知数:根据所求问题设出合适的未知数;列不等式:根据题意中的数量之间的不等关系,列出正确的不等式;解不等式:求出不等式的解集;作答:对不等式的解集进行分析讨论,根据题意要求,作出答语。考点3一元一次不等式组(1) 一元一次不等式组的概念一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。不等式组的解集:不等式组中所有不等式的解集的公共部分,叫做这个不等式组的解集。解不等式组:求不等式组的解集的过程,叫做解不等式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论