分式的增根问题_第1页
分式的增根问题_第2页
分式的增根问题_第3页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021年05月20初中数学组卷.解答题共24小题1.2021秋?长春校级月考关于x的方程+上=一有增根,求k的值.x±2x£-42.2021春?靖江市校级月考假设关于的值.x的方程矿k_J_一:七有增根,求增根和k3.2021春?安岳县校级月考假设关于的值.x的方程有增根,求增根和4.2021春?简阳市校级月考E假设解关于X的分式方程六喘会产生增I'IJL»根,求m的值.2假设方程竺3=一1的解是正数,求a的取值范围.5.2021春?宜宾校级期中假设分式方程有增根,求m的值.114k2021秋?潍坊校级月考假设关于X的方程u一五

2、寸有增根,求增根和k的值.k4一日7.2021春?安溪县校级月考假设解关于x的方程一g二产生增根,求k的值.W一JX_J8.2021春?东区校级月考假设关于x+_x+kx的方程一寸二i有增根,求增根和k的值.6x+2k59.2021秋?钟祥市校级期中当k为何值时,分式方程7-一;一一有增根?Z-1KIK1JK10.2021秋?华龙区校级期中1解分式方程:2当m为何值时,关于x的分式方程巨二32-:kx_2耳一8m,=&有增根.x-rI-x11.2021秋?共湖市校级月考假设关于x的分式方程Ml学存在增根,求的值.12. 2021春?慈溪市期末当13. 2021春?重庆期中关于14.15

3、.16.17.18.19.20.m的值.的分式方程假设关于xa1+K-2X2-421.假设分式方程+2=0有增根x=2,求a的值.求m的值.24.2当m为何值时,关于x的方程京会产生增根?m为何值时,去分母解方程虫土=1会产生增根?X-62-sx的方程皂血有增根,求m的值.2021年05月20初中数学组卷参考答案与试题解析.解答题共24小题1.2021秋?长春校级月考关于x的方程有增根,求k的值.【分析】分式方程去分母转化为整式方程,由最简公分母为0求出x的值,代入整式方程计算即可求出k的值即可.【解答】解:去分母得:x+2+kx-2=3,由分式方程有增根,得到x+2

4、x-2=0,即x=2或x=-2,把x=2代入整式方程得:4=3,不成立;把x=-2代入整式方程得:-4k=3,即k=-0.75.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.st+k122.2021春?靖江市校级月考假设关于x的方程一号-_有增根,求增根和kXX.XDXJ的值.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0,求出x的值,即为增根,进而确定出k的值.【解答】解:最简公分母为3xx-1,去分母得:3x+3k-x+1=-2x,由分式方程有增根,得到x=0或

5、x=1,把x=0代入整式方程得:k=-兰;把x=1代入整式方程得:k=.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.3.2021春?安岳县校级月考假设关于x的方程Z号六有增根,求增根和的值.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-2x+2=0,所以增根是x=2或-2,把增根代入化为整式方程的方程即可求出k的值.【解答】解:方程两边都乘x-2x+2,得x+2+kx-2=3,.原方程有增根,.,最简公分母x-2x+2=0,x=2或-2,把x=

6、2代入整式方程得:4=3,故矛盾,.x尹,把x=-2代入整式方程得:k=-玉.1x=-2,k=-.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行: 根据最简公分母确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.4.2021春?简阳市校级月考1假设解关于x的分式方程+=3会产生增k-2V2-4«+2是根,求m的值.2假设方程卖坦=-1的解是正数,求a的取值范围.【分析】1根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出m的值.2先解关于x的分式方程,求得x的值,然后再依据解是正数"建立不等

7、式求a的取值范围.【解答】解:1方程两边都乘x+2x-2,得2x+2+mx=3x-2,最简公分母为x+2x-2,原方程增根为x=史,.,把x=2代入整式方程,得m=-4.把x=-2代入整式方程,得m=6.综上,可知m=-4或6.2解:去分母,得2x+a=2-x解得:x=气七.解为正数,2-a>0,av2,且x专,a乒4av2且a=4.【点评】此题考查了分式方程的增根、分式方程的解、一元一次不等式,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.5.2021春?宜宾校级期中假设分式方程有增根,求m的值.【分析】增根是化为整式方程后产生的不适合分式方

8、程的根.所以应先确定增根的可能值,让最简公分母x+1x-1=0,得到x=-1或1,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘x+1x-1,得2x-1+3x+1=m,.原方程有增根,.,最简公分母x+1x-1=0,解得x=-1或1,当x=1时,m=4;当x=1时,m=6,故m的值可能是-4或6.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行: 让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.11+k2021秋?潍坊校级月考假设关于x的方程-=7有增根,求增根和kJ_voiJi-J的值.【分析】分式方程去分母转化为整式方程,由

9、分式方程有增根,求出x的值,代入整式方程求出k的值即可.【解答】解:去分母得:3x+3-x+1=x+kx,由分式方程有增根,得到3xx-1=0,解得:x=0或x=1,把x=0代入整式方程得:4=0,矛盾,舍去;把x=1代入整式方程得:k=5.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.6. k4k2021春?安溪县校级月考假设解关于x的方程+2=产生增根,求k的值.五一Sx_5【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-3=0,得到x=3,

10、然后代入化为整式方程的方程算出k的值.【解答】解:方程两边都乘x-3,得k+2x-3=4-x,.方程有增根,最简公分母x-3=0,即增根是x=3,把x=3代入整式方程,得k=1.【点评】此题考查了分式方程的增根,解决增根问题的步骤: 确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.2021春?东区校级月考假设关于x的方程有增根,求增根和k的值.【分析】根据解分式方程的步骤,可得相应的整式方程的解,根据分式方程无解,可得答案.【解答】解;方程两边都乘以3xx-1,得3x+1-x-1=xx+k化简,得x2+k-2x-4=0.分式方程无解,.x=1或x=0舍,x=1,k=

11、5,答:增根是1,k是5.【点评】此题考查了分式方程的增根,先化成整式方程,把分式方程的曾根代入整式方程.7. 2021秋?钟祥市校级期中当k为何值时,分式方程二严、-卫有增根?k-1xIk-!x【分析】分式方程两边乘以xx-1去分母转化为整式方程,由分式方程有增根得到xx-1=0,求出x=0或1,将x=0或1代入整式方程即可求出k的值.【解答】解:方程两边同乘以xx-1得:6x=x+2k-5xT-2分又.分式方程有增根,xx-1=0,解得:x=0或1当x=1时,代入整式方程得:6X1=1+2k-51T,解得:k=2.5,当x=0时,代入整式方程得:6>=0+2k-50-1,解得:k=-

12、2.5,那么当k=2.5或-2.5时,分式方程有增根.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.8. 2021秋?华龙区校级期中1解分式方程:;二二3七?2当m为何值时,关于x的分式方程一-习业-二8有增根.x-7-x【分析】1观察可得最简公分母是x-2,方程两边乘最简公分母,可以把分式方程转化为整式方程求解;2增根是分式方程化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-7=0,得到x=7,然后代入化为整式方程的方程算出m的值.【解答】解:1方程的两边同

13、乘x-2,得-x+1=3x-2+1,解得x=1.检验:把x=1代入最简公分母x-2照,所以x=1是原分式方程的根;2方程两边都乘以x-7得:x-8+m=8x-7,.方程有增根,x-7=0,x=7.把x=7代入x-8+m=8x-7中,得:m=1.所以当m=1时,原分式方程有增根.【点评】此题考查了解分式方程及增根问题,难度适中.注意:解分式方程的根本思想是转化思想",把分式方程转化为整式方程求解,解分式方程一定注意要验根;关于增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.2021秋斜共湖市校级月考假设关于x的分式方程竺

14、丹土存在增根,求m而产二的值.【分析】先把方程两边同乘以xx+1得到整式方程x2-2x-m-2=0,由于原方程存在增根,那么xx+1=0,即增根只能为0或-1,然后把x=0与x=-1分别代入x2-2x-m-2=0得到关于m的方程,解方程即可得到m的值.【解答】解:方程两边同乘以xx+1得,2x2-m+1=x+12,整理得,x2-2x-m-2=0,.关于x的分式方程兰-毋存在增根,xx+1=0,x=0或x=-1,把x=0代入x2-2x-m-2=0得,-m-2=0,解得m=-2;把x=1代入x2-2x-m-2=0得,1-2-m-2=0,解得m=1;m的值为-2或1.【点评】此题考查了分式方程的增根

15、:先把分式方程两边乘以最简公分母,把分式方程转化为整式方程,再解整式方程,然后把整式方程的解代入最简公分母中,假设其值不为零,那么此解为原分式方程的解;假设其值为0,那么此整式方程的解为原分式方程的增根.9. -4xH5k-id2021春?慈溪市期末当m为何值时,去分母解万程=1-会广生增根?JK-2-K【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母3x-2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘3x-2,得4x+1=3x-6+35x-m即3m=14x-7分式方程假设有增根,那么分母必为零,即x=2

16、,把x=2代入整式方程,3m=14>2-7,解得m=7,所以当m=7时,去分母解方程-中=1-兰二巴会产生增根.%"2-x【点评】根问题可按如下步骤进行: 根据分式方程的最简公分母确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.10. 2021春?重庆期中关于x的方程壶+刍二,血、有增根,求m的值.XK-1K(.X-1J【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母xX-1=0,所以增根是x=0或1,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘XX-1,得3X-1+6x=x+m.原方程有

17、增根,.,最简公分母xx-1=0,解得x=0或1,当x=0时,m=3;当x=1时,m=5.当m=-3或5时,原方程有增根.【点评】增根问题可按如下步骤进行: 根据最简公分母确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.14.当m为何值时,【分析】分式方程去分母转化为整式方程,根据分式方程有增根,得到最简公分母为0求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:m-1x-x+1=m-5x-1,去括号得:m-2x-1=m-5x-m+5,移项合并得:3x=-m+6,6-IT解碍:x=一,由分式方程有增根,得到xx+1x-1=0,即x=0或1或-1,当x=0时,

18、m=6;当x=1时,m=3;当x=-1时,m=9.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.k的值.15. -5k1假设关于x的方程+二=与_有增根,试求【分析】根据等式的性质,可把分式方程转化成整式方程,根据分式方程的增根适合整式方程,可得关于k的一元一次方程,根据解方程,可得答案.【解答】解:去分母,得x+1+k-5x-1=k-1x.化简,得3x+6-k=0.当x=1时,3+6-k=0,解得k=-9;当x=0时,6-k=0,解得k=6;当x=-1时,-3+6-k=0,解得k=3.【点评

19、】此题考查了分式方程的增根,把分式方程的增根代入整式方程是解题关键.16. 关于x的分式方程一一+1=口一出现增根x=-1,求k的值.(x+1J-1J【分析】分式方程去分母转化为整式方程,将增根x的值代入计算即可求出k的值.【解答】解:分式方程去分母得:k+x+1x-1=x-1,将增根x=-1代入得:k+-1+1-1-1=-1-1,解得:k=-2【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.3卜:4=x-3H3有增根,求a的值.17.假设关于x的方程【分析】分式方程去分母转化为整式方程,根据分

20、式方程有增根,得到最简公分母为0求出x的值,代入整式方程即可求出a的值.【解答】解:去分母得:3x+9+ax=4x-12,由分式方程有增根,得到x+3x-3=0,即x=-3或x=3,把x=-3代入整式方程得:-9+9-3a=-12-12,即a=8;把x=3代入整式方程得:9+9+3a=12-12,即a=-6,综上,a的值为-6或8.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.18.假设关于x的方程有增根,求增根和k的值.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的

21、可能值,让最简公分母3xx-1=0,得到x=0或3,然后代入化为整式方程的方程算出k的值.【解答】解:方程两边都乘3xx-1,得3x+1-x+1=kx.原方程有增根,.,最简公分母3xxT=0,解得x=0或1,当x=0时,4=0,这是不可能的.当x=1时,k=6,故k的值可能是6.答:增根为x=1,k的值为6.【点评】此题考查了分式方程的增根.增根问题可按如下步骤进行: 让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.19.假设关于x的方程求增根和m的值.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出x的值,代入整式方程求

22、出m的值即可.【解答】解:去分母得:-3x+1=m,由分式方程有增根,得到x2-1=0,即x=1或x=-1,把x=1代入整式方程得:m=-6;把x=-1代入整式方程得:m=0.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.20. 假设关于x的分式方程'就钏-1=有增根,求m的值.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-3x=0,得到x=3或x=0,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘xx-3,得2mx+x

23、2-xx-3=2x-3.原方程有增根,.,最简公分母xx-3=0,解得x=3,或x=0.当x=3时,m=-2,当x=0时,关于m的整式方程不存在;综上所述:m=-2.【点评】此题考查了分式方程的增根.增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.21. 假设分式方程一知+2=0有增根x=2,求a的值.k-2X2-4【分析】首先把的方程去分母,然后把x=2代入方程求解即可.【解答】解:方程去分母,得ax+2+1+2x2-4=0,把x=2代入方程得4a+1=0,解得:a=-【点评】此题考查了分式方程的增根,注意分式方程的增根不是原来方程的根,但是把分式方程化成整式方程后整式方程的根,理解分式方程增根产生的原因是关键.22. 去分母解关于x的方程+当=0得到使分母为0的根,求m的值.【分析】先把分式化为整式方程2x+2+mx=0,由于原分式方程有增根,那么有x+2x-2=0,得到x=2或-2,即增根为2或-2,然后把x=2或-2代入整式方程即可得到m的值.【解答】解:方程两边乘以x+2x-2,去分母得:2x+2+mx=0,2+mx+4=0,.分式方程有增根,.x+2x-2=0,得到x=2或-2,当x=2时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论