下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初中几何公式定理:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1关于某条直线对称的两个图形是全等形13、定理2如果两个图形关于某直线对称,那么对
2、称轴是对应点连线的垂直平分线14、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1在角的平分线上的点到这个角的两边的距离相等23、定理2到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合初中几何公式定理:三角形25、定理三角形两
3、边的和大于第三边26、推论三角形两边的差小于第三边27、三角形内角和定理三角形三个内角的和等于180°28、推论1直角三角形的两个锐角互余29、推论2三角形的一个外角等于和它不相邻的两个内角的和30、推论3三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33、等腰三角形的性质定理等腰三角形的两个底角相等34、推论1等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线
4、、底边上的中线和高互相重合36、推论3等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1三个角都相等的三角形是等边三角形39、推论2有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1两角对应相等,两三
5、角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3三边对应成比例,两三角形相似(SSS)47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2相似三角形周长的比等于相似比50、性质定理3相似三角形面积的比等于相似比的平方51、边角边公理有两边和它们的夹角对应相等的两个三角形全等52、角边角公理有两角和它们的夹边对应相等的两个三角
6、形全等53、推论有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理有三边对应相等的两个三角形全等55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等初中几何公式定理:四边形57、36058、四边形的外角和等于360°59、60、61、平行四边形性质定理1平行四边形的对角相等62、平行四边形性质定理2平行四边形的对边相等63、推论夹在两条平行线间的平行线段相等64、平行四边形性质定理3平行四边形的对角线互相平分65、平行四边形判定定理1两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2两组对边分别相等的四边形是
7、平行四边形67、平行四边形判定定理3对角线互相平分的四边形是平行四边形68、平行四边形判定定理4一组对边平行相等的四边形是平行四边形多边形内角和定理n边形的内角的和等于(n-2)X180°360初中几何公式定理:矩形69、矩形性质定理1矩形的四个角都是直角70、矩形性质定理2矩形的对角线相等71、矩形判定定理1有三个角是直角的四边形是矩形72、矩形判定定理2对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1菱形的四条边都相等74、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(aXb)+276、菱形判定定理1四
8、边都相等的四边形是菱形77、菱形判定定理2对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78、正方形性质定理1正方形的四个角都是直角,四条边都相等79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1关于中心对称的两个图形是全等的81、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83、等腰梯形性质定理等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理在同一底上
9、的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形初中几何公式:等分87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)+2S=LXh92、(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d93、(2)合比性质如果a/b=c/d,那么(a土
10、b)/b=(c土d)/d94、(3)等比性质如果a/b=c/d=m/n(b+d+n乒0),那么,(a+c+m)/(b+d+-+n)=a/b95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等
11、于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、至ij定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦
12、的直径平分这条弦并且平分弦所对的两条弧111、推论1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1同弧或等弧所对的圆周角
13、相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、直线L和。相交d<r直线L和。相切d=r直线L和。相离d>r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1经过圆心且垂直于切线的直线必经过切点125、推论2经过切点且垂直于切线的直线必经过圆心126、切线长定理从
14、圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上1
15、35、两圆外离d>R+r两圆外切d=R+r两圆相交R-r<d<R+r(R>r)两圆内切d=R-r(R>r)两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n>3):依次连结各分点所得的多边形是这个圆的内接正n边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形面只是一些小技巧,接下来我们读完题开始找思路。比较线段的大小关系的问题,通常有四种情况(1) a>b;(2) a+b>c;(3) a+b>c+d;(4) a+b+c>d。("<
16、”的情况同理)思路从何而来,从基础知识而来。那么首先我们要回想在初中阶段都学过什么关于线段长度的定理,每条定理后面又有什么知识点呢。我们一起看一下:1、垂线段最短r直角三角形中斜边大于直角边2、两点之间线段最短r三角形两边之和大于第三边r三角形中两边之差小于第三边r八字形与飞镖模型在八字形中,AB+CD<AD+CB,在飞镖模型中AB+AD>BC+CD,注意,这两个模型的结论不能够直接使用,但是可以为我们的求证提供一个良好的思路。知识点回忆完了,我们接下来看问题,如果是(1)中的情况,我们首先想到的是1的方法,就是运用直角三角形斜边大于直角边,如果发现所给的两条线段不在同一个直角三角
17、形中,那么就要想到的通过平移或构造平行四边形,将两条线段放到同一个直角三角形中来解决问题。如果1中的方法比较麻烦,这时我们要能想到把问题转化成(2)的类型,运用2的方法来解决。这种方法就是我们常说的“截长补短”,把较长的一条线段拆成两条,让这两条线段和剩下的那一条线段构成三角形,运用“三角形两边之和大于第三边“来解决,同样,如果这几条线段不在同一个三角形内,要想办法通过平移或构造平行四边形将他们放在一起。这里需要注意,经常用到的还有一个方法,就是截取较长线段,通过全等或其他方法证明其中某一段等于原先那条较短的线段,这里用的实际上就是小学的比较大小的方法。如果是(2)的情况一般的,直接运用2的方
18、法来解决,即将三条线段放到同一个三角形中去。在某些情况下也可以通过构造全等三角形或者平移,将两条线段合并回归到1的方法中去。如果是(3)的情况,可以通过合并线段,转化为(2)或(1)的问题进行解答,也可以构造飞镖模型与八字形,通过已知模型四条线段之间的关系进行辅助线的添加,从而求证。如果是(4)的情况,一般的通过合并线段转化为(2)(1)的问题进行解答。问题全面的分析完了,这些都仅仅是从问题入手来得出的方法,如果再配合条件,能够进一步明确方法。一般的,这种问题辅助线的画法有很多,求证的方法也会多种多样,因此在平常做题的时候不放每种方法都尝试一下,为自己多沉淀些解题思路。下面列举一道具体的题目,
19、说明如何从一眼找出方法。ABC中AB=CD,D、E是AB、AC上的点,并且AD=CE,求证DEA1/2BC拿到这道题我们可以直接从问题入手来分析,两条线段比较大小,属于第(1)类问题,首先想到构造直角三角形,也就是说我们只要让DE作为斜边,1/2BC作为直角边即可。现在DE有了,但是1/2BC在哪里找?这里我们首先回想什么知识点涉及到线段的一半?答案很简单,中点以及中位线。首先我们做ABC的中位线HF,此时HF=1/2BC,然后将HF平移至DG处(即过D点做DG平行且等于HF),然后连结GE,只需要证明DGE为RT即可证明AIGE为RTr证明IF=FG=FE即可。同样的,通过中位线构造直角三角形证明斜边大于直角边,还可以有以下两种辅助线做法:接下来我们从中点入手,做ABC中线AF,此时FC=1/2BC,接下来将为了能构成直角三角形,过D点作DG/AC交AF于G,连结GCo/AF±BC(三线合一)故而GFC为RT。现在只需要证明GC=DE即可r证明四边形DGEC为平行四边形r证明DG=EC证明DG=DA证明/DAG=/DGA。通过AC平行DG且AF为角分线,很容易得到/DGA=/GAC=/GAD,从而得证。下面我们再分析问题,DEA1/2BC可以看成2DEABC,即是说我们需要构造一个直角三角形,证明斜边等于2DE,直角边等于BC,辅助线画法如下过E点作HE平行且等于B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030绿色建筑标准升级与产业链投资价值报告
- 2025-2030绿色建筑外窗技术革新与产业链投资价值评估报告
- 2025-2030绿电交易机制完善程度对高耗能企业用能结构影响量化评估
- 2025-2030经颅微电流刺激在幼儿注意力提升中的安全性与有效性评估
- 2025-2030纳米药物靶向递送系统创新趋势及风险投资决策参考报告
- 2025-2030纳米滑石粉制备技术突破与产业化前景分析
- 2025-2030纳米材料在新能源领域的应用现状及前景预测
- 2025-2030纳米抗体药物发现平台构建与肿瘤免疫治疗投资机会评估报告
- 2025-2030红木资源稀缺性对市场价格波动影响研究报告
- 2025-2030精酿啤酒风味稳定性控制技术突破与应用
- 小学一年级拼音卡片模板全一年必用
- 2025年仓库账务员考试及答案
- 猴子身法教学课件
- 大疆植保无人机培训课件
- 2025年行政岗位的笔试题及答案
- 2025年四川省公考《申论》真题及答案(县乡、普通选调卷)
- 锅炉环保脱硫措施方案(3篇)
- 变电检修大讲堂课件
- 2025广西公需科目考试答案(3套涵盖95-试题)一区两地一园一通道建设人工智能时代的机遇与挑战
- 消费税税收政策课件
- 《中学化学元素符号记忆法教案》
评论
0/150
提交评论