



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、聚合物结构与性能习题集考试为开卷考试,但只能带课本,不能带任何资料,就是希望大家完全掌握下列知识,做合格高分子专业研究生!一、 提高聚合物样品电镜下稳定性的方法对样品进行支撑:1. 大目数电镜铜网,如 400 目铜网;2. 无定型材料作支持膜:硝化纤维素(火棉胶),聚乙烯醇缩甲醛( PVF),或无定型碳;碳支持膜:通过真空蒸涂的办法,将碳沉 积在光洁的载玻片或新剥离云母片表面, 然后漂在蒸馏水表面,转移 至铜网上。二、 提高聚合物样品成像衬度的方法有几个?( 1)染色:将电子密度高的重金属原子渗入聚合物的某些区域通过提高其电子密度来增大衬度的。从最终效果上染色分正染色和负染色。从作用机制上染色
2、分化学反应和物理渗透。从手段上分直接染色和间接染色。最常用的染色剂有:四氧化锇( OsO4、四氧化钉( RuO4四氧化锇( OsO4染色:四氧化锇染色是利用其与-C=C-双键以及-OH和-NH2基团间的化学反应,使被染色的聚合物含有重金属锇,从而使图像的衬度提高。四氧化钉( RuO4染色:四氧化钉染色是利用其对不同聚合物或同一聚合物的不同部位(如晶区和非晶区)的不同渗透速率,使不同聚合物或同一聚合物的不同部位含有不同量的重金属钉,从而使图像的衬度提高。(2)晶粒方向 :为得到清晰的衬度,可调整晶体样品的取向,使得除透射电子束外,只出现一个很强的衍射束,一般称为双光束情况( 3) 调整样品厚度;
3、( 4) 结构缺陷;( 5) 次电子与二次电子相位三、何为橡胶的高弹性?高弹性的本质是什么?什么化学结构和聚集态结构的高分子能够作为橡胶材料?请用应力应变曲线表达出 橡胶、塑料、有机纤维三者的区别。橡胶的高弹性:小应力下的大形变、外力除去后可以恢复;高弹性的本质是熵弹性。橡胶弹性是由熵变引起的,在外力作用下,橡胶分子链由卷曲状态变为伸展状态,熵减小,当外力移去后,由于热运动,分子链自发地趋向熵增大的状态,分子链由伸展再回复 卷曲状态,因而形变可逆。具有橡胶弹性的化学结构条件:( 1) 由长分子链组成( 2) 分子链必须有高度的柔性( 3) 分子链必须结合在一个交联网络之中第一个条件是熵弹性的本
4、源;第二个条件是分子链迅速改变构想的可能;第三个条件保证了可恢复性,这是橡胶材料不同于单分子链之处。(4) 具有橡胶弹性的凝聚态结构:无定形态。(橡胶的聚集态是指很多生胶分子聚集在一起时分子链之间的几何排列方式和堆砌状态,由于橡胶的分子量很大,只存在固体和液体。橡胶为柔性长链分子,再加上它在常温下分子链中的链段在不断运动,故这么细长的柔性分子在常温下都会卷曲成无规线团,很多无规线团又无序的堆砌成无定形结构。)应力应变曲线:略(需要补全)。四、何为橡胶材料的粘弹性?粘性的本质来源是什么?请写出WLF方程,并阐述该方程的物理意义。材料对外力有两典型的响应:即弹性响应与黏性响应。分别用胡克定律和牛顿
5、流体定律来描述橡胶材料的粘弹性是指高聚物材料不但具有弹性材料的一般特性,同时还具有粘性流体的一些特性。即弹性响应和黏性响应都很明显。橡胶受拉伸时发生可逆的形变,但链段运动需要克服材料的内阻,本质上也是一种流动。粘性的本质来源是原子间结合力。橡胶的粘性表现为应力松弛。即在一定的温度和恒定应变的作用下,观察试样的应力随时间增加而衰减的现象。由于橡胶材料为长链聚合物,所以分子链在发生一定形 变后,会使分子链滑移,因此表现出粘性。WLF方程:Ts 为参考温度, C1 ,C2 为取决于聚合物种类和参考温度的常数。如果取Ts 二 Tg, C1 ,C2普适常数C1 = 17.44,C2=51.6物理意义:表
6、明移动因子与温度与参考温度之差有关,反映的是高分子链段运动特有的温度依赖关系。实用意义:一个温度下测定的力学性能- 时间(频率)曲线可以在时间(频率)坐标上平移变换为另一温度下的曲线,该方程建立了平移量与温度差之间的关系。五、请举两个例子说明弹性体大分子链结构、性能与应用的关系。例 1. 丁基橡胶 IIR丁基橡胶是异丁烯和少量二烯烃(异戊二烯)共聚制成的无规共聚物,为白色可暗灰色透明弹性体,其合成过程如下:丁基橡胶中异丁烯链节中两个对称取代的甲基使得丁基橡胶分子链成为随意卷曲的无定形状态,侧甲基的密集排列限制了聚合物分子的热运动,填补了分子链间的孔隙,因而具有优异的耐透气性、耐透水性和吸收能量
7、的特性(适合用于阻尼减震材料);聚异丁烯段规整、对称性高,在拉伸时形成结晶,有自补强作用;并且丁基橡胶还有耐候性、耐臭氧性、耐水性、耐化学药品性、聚合物的韧性好,回弹性小,冲击吸收性能好;但IIR 的自黏性和互黏性差,与其它通用橡胶相容性低通过卤化的方法提高黏结性(卤素含量1 22%)。IIR 的应用:利用 IIR 的高气密性充气轮胎的内胎;使用卤化 IIR 制造无内胎子午线轮胎的气密层;利用IIR的耐透水性防水卷材,电气制品;利用利用IIR IIR的咼耐热性的高阻尼性耐热运输带;减震、吸振制品。例 2. 丁苯橡胶 SBR丁苯橡胶是以丁二烯和苯乙烯为单体共聚而得的高分子弹性体。其结构式为:丁苯
8、橡胶主链上有部分碳碳双键结构,侧基中有苯环和碳碳双键,并且其含量随聚合方法和聚合条件等因素的改变而改变, 导致其产品的性能也有一些差异。丁二烯链节的微观结构,苯乙烯结合量, 序列分布和主链结构(星形)都对丁苯橡胶的性能有影响。丁二烯 1,2- 构型增加,会使丁苯橡胶 Tg 升高,回弹性降低,扯断伸长率、 300%t伸应力、拉伸强度以及耐磨性均下降,加工性能和胎面胶的抗 湿滑性得到改善。苯乙烯结合量增加, Tg 升高,耐磨性下降;嵌段 苯乙烯量增加,引起拉伸强度和定伸应力下降,生热和变形增加。支 化星形溶聚丁苯橡胶滚动阻力降低,抗湿滑性能和耐磨性能都有提 高。性能:(1) 非结晶性橡胶,必须使用
9、增强填料补强。补强后的强度能 达到NR纯胶的水(2)耐磨性较好,耐寒性较差(比NR , 内耗大,生热高,弹性较低。( 3) 耐热氧老化特性优于 NR硫化速度较 NR慢(因 SBR的双 键浓度较低和苯环的体积位阻效应); SBR的使用上限温度比 NR高 10-20 C。( 4) SBR的耐溶剂性能以及电绝缘性能与 NR相似,因为均为非 极性二烯类橡胶。( 5) 加工性能比 NR稍差,尤其是 S-SBR包辊性差,自粘互粘 性差。应用:( 1)应用广泛,除要求耐油、耐热、耐特种介质等特殊性能外 的一般场合均可使用。( 2)主要用于轮胎工业,如轿车胎、拖拉机胎、摩托车胎中应用 比例较大,载重及子午胎中
10、应用比例较小些。( 3)在无特殊要求的胶带、胶管及一些工业制品中也获得了广泛 的应用,如输水胶管、鞋底二锑、含卤阻燃剂、硼酸锌、氢氧化铝、磷酸酯类)。向体系中添加阻燃剂,尽管对体系的力学性能有所影响,但具有较好的实用性和经济性。六、如果对牛顿流体、胡克弹性体以及高分子粘弹体三种不同材料施加如下图所示的周期性应变作用,请在下图画出这三种材料的响应应力曲线。( a)胡克弹性体动态应力与应变的关系(黑色为应变)(应力与应变同时响应)(固体)( b)牛顿流体的动态应力与应变的关系 (黑色为应变)(应力导前应变 n /2 )(流体)( C)高分子粘弹体应 力与应变的关系(应力导前应变一个相角)(弹性体)
11、(考试只用画出前3 个图)七、何谓储能模量、损耗模量以及复数模量?何谓损耗角正切?量: G*=S(G ,G”),总变形能量指标。复数模储能模量:G =T'/丫,弹性储存能量指标。损耗模量:G=T/丫,变形消耗能量指标。损耗因子: tg8 = G / G , 亦称损耗角,流动性参考指标,表征材料的阻尼性能。损耗因子越大,耗散能量的能力越强。八、概述结晶高聚物从低温到高温升温时,可能发生的热转变,其相应温度的名称;并给出转变的分子运动解释。答:随着受热温度的增加,结晶高聚物可能发生的热转变有:玻璃化转变,对应的温度名称为玻璃化温度Tg; 熔融态转变,对应的温度名称为熔点 Tm最后到达向粘流
12、态转变,对应的温度名称为 粘流温度 Tf 。分子运动角度对发生的热转变解释如下:结晶高聚物由于含有非结晶部分, 因此其温度形变曲线也会出现玻璃化转变,但 由于结晶部分的存在,链段运动受到限制,模量下降较少。对于结晶 度很高的材料也会不出现玻璃化转变,即在 Tg-Tm之间并不出现高弹 态,只有达到熔点Tm结晶瓦解,链段热运动程度迅速增加,模量 才迅速下降。为什么 PE能制成高强高模纤维就是这个道理。若高聚 物分子量较高 Tm<T,则在 Tm与 Tf 之间可以出现高弹态;若高聚物 分子量较低,则 Tm>T,大分子晶体熔融后直接变成粘流态。九、请简述影响高聚物玻璃化转变温度的各种因素,
13、并给出一种 测试玻璃化转变温度的方法和简单原理。答:影响玻璃化温度的因素有如下:结构因素,包括链结构的影响、分子量的影响、共聚与共混的影响、交联的影响、结晶和取向的影响。外界条件的影响,包括升温速率、外力、测量频率、结晶和取向的影响,压力影响。可以通过 DTA方法测量玻璃化温度,原理为高聚物在玻璃化转变时由于改变热容使 DTA曲线基线平移,如图 所示(材料研究方法课本 p118 图 22),得到 DTA曲线之后,以转折线 的延线和基线延线的交点作为玻璃化温度 Tg概念区分初期结晶与二次结晶:初期结晶是指液态或气态初步形成晶体的过程; 二次结晶是指结晶后期发生在初晶结构不完善的部 位,或者发生在
14、初始晶残留下的非晶区内的结晶形象。十、试从聚合物的本体结构和极性扼要叙述能够相互容混的聚合物应满足的条件。 相容同晶型高分子共混物和相容络合高分子共混物 是如何形成的?如何测定多组分聚合物体系的相容性?答:能够相互容混的聚合物应满足的条件为: 结构和极性上组分 聚合物之间应相近或相似, 或不同聚合物间能形成化学键或氢键。 相 容同晶型高分子共混物是由于组成共混物的组分聚合物间相容性好 且它们的结晶晶型相同, 共混后不同聚合物间共同形成结晶, 从而形 成相容同晶型高分子共混物; 相容络合高分子共混物是聚合物共混后 能在不同聚合物间形成络合作用,从而形成相容络合高分子共混物。 多组分聚合物体系的相
15、容性的测定方法有: 1)将共混物溶解在溶剂 中观察是否发生相分离; 2)将共混物溶液浇铸成膜,观察膜的透明 性及脆性来了解其相容性的好坏 3)测 Tg, 观察是否只有一个 Tg; 4) 动态力学方法及动态流变方法 5)显微技术 6)小角 X 射线衍射。十一、试扼要说明分子量及其分布、温度、压力和剪切速率对聚合物熔体粘度的影响。 为何嵌段和接枝共聚物的熔体粘度高于按按该 共聚物分子量和组成的估算值?答:分子量及其分布(一般情况下 , 分子量越大 , 粘度越大 ; 在 平均分子量相同时 , 在高剪切速率下分子量分布越宽 , 粘度越小) 、 温度(温度上升 , 粘度降低 , 刚性分子对温度的变化表现
16、出更大的敏 感性)、压力(压力越大 , 粘度越大)和剪切速率和剪切应力(对刚 性分子链和柔性分子链 , 粘度对剪切速率和剪切应力的依赖性不同 , 柔性分子比刚性分子有更大的敏感性 , 即随剪切速率增加和剪切应 力, 柔性分子的粘度降低更明显) 。因为通过嵌段和接枝, 聚合物分 子间通过化学键结合 , 聚合物分子间作用力增强 , 比具有相同组成的 未嵌段和接枝的高聚物分子间的作用力强 , 因此嵌段和接枝共聚物的 熔体粘度高于按按该共聚物分子量和组成的估算值。十二、在低温下为何经过增塑的半晶性聚合物的硬度或脆性反而更大?答:因为在低温下增塑剂在半晶性聚合物中可能起到晶核作用,促进聚合物的结晶,使聚
17、合物的结晶度增加,从而导致其脆性变大;另外在该情况下增塑剂也可能起到破坏聚合物结晶完整性的作用, 使 聚合物结晶中含有更多的缺陷,导致聚合物力学性能变坏。十三、在应力作用下为何高分子在不良溶剂中比在优良溶剂中容易断链?答:因为高分子在优良溶剂中分子链的自由度更大,在受到应力作用时,分子链可以通过键的内旋转来抵消应力的作用,相当于这时分子链的柔性增加;而在不良溶剂中,这时分子链的旋转受到限制, 使分子可能更快地达到化学键断裂的程度, 因此应力作用下为何高分 子在不良溶剂中比在优良溶剂中容易断链。十四、试扼要叙述下列分析技术在聚合物结构研究方面的应用:a)DSC;b)WAX;Dc)TEM;d)FT
18、IR答: a ) DSC 1、测 Tg、Tm Td;2、测结晶度及结晶动力学3、 测共聚物结构及共混复合物的相分离行为4、测聚合物的热稳定性(如 热氧化、热降解等)等方面。b) WAX:D 1)聚合物晶体尺寸及完整性的测定2)晶体取向分析3)结晶度的研究4)聚合物构象的研究5) 聚合物形变和退火的研究 6)聚合物晶体中分子运动的研究,7)高 分子溶液的研究等。c)TEM: 1 )内部细微的形态与结构;2)聚合物的晶格; 3)聚合物网络; 4)微孔大小分布; 5)分子量分布。 d) FTIR:1)测端基计算聚合物的平均分子量; 2)测定反应动力学及相对速度 ; 3)测化学变化; 4)测化学结构;
19、 5)测聚合物构型; 6)测构象及结 晶; 7)测支化度; 8)测聚合物共混;9)测分子间作用力等方面。十五、 A B 两聚合物不相容混,试扼要叙述提高A 和 B 聚合物 容混性可采用哪些方法;如何用玻璃化转变温度来确定两聚合物的容混性,举出两中测定玻璃化转变温度的方法。答:方法有( 1)加入含有能与A、B 两种聚合物作用的嵌段或接枝共聚物作为增容剂,;( 2)加入带有官能团的聚合物,在共混过程中通过反应形成增容剂,;( 3)通过反应性共混就地形成嵌段共聚物作为增容剂,;( 4)通过对基体树脂进行部分氧化,或用丫射线、电 子束、微波、紫外光等辐射或辐射接枝,达到增加基体树脂与分散相间的浸润性,
20、增加两相间的相容性;( 5)在加工过程中通过力化学方法进行自增容。用测Tg的方法确定容混性:通过测定共混物的Tg, 观察是否在两种聚合物的Tg 间有单一的共混物的Tg 或一玻璃化转变区,如果有这样的单一的共混物Tg或一玻璃化转变区,则两聚合物的容混性好,如果测得的共混物的Tg 为两个,则两 Tg 相互间相距越 近,则两聚合物容混就越好,而两Tg 相互间相距越远,则两聚合物容混就越差。 Tg 测定方法:( 1)膨胀计法( 2)DTA或DSCfe( 3)折 光率法,另外还有利用聚合物在其玻璃化转变温度前后其他物理性质如导热系数、扩散系数、介电损耗、力学损耗等性能的突然变化来测定 Tg。十六、分析聚
21、合物结构(一、二、三次结构)对聚合物强度的影响。答:一次结构是指聚合物的近程结构,包括链中原子的种类和排列,取代基和端基的种类, 单体单元的排列顺序,支链的类型和长度等分子构造以及链中某一原子的取代基在空间的排列等分子构型,是 指分子链的化学结构; 二次结构是指分子链的远程结构,包括分子的 大小与形态, 链的柔顺性及分子在各种环境中所采取的构象;三次结 构是指高分子材料整体的内部结构,包括晶态结构、非晶态结构、取向态结构和液晶态结构。一次结构对聚合物强度的影响为: 因为高分 子具有强度在于主链的化学键力和分子间力,所以增加高分子的极性 或产生氢键可使强度提高,但如果极性基团过密或取代基团过大,
22、阻 碍链段运动,高分子的拉伸强度虽然大了,但材料变脆;主链含有芳杂环的聚合物,其强度和模量都比脂肪族主链的高;分子链支化程度 增加,使分子间的距离增加,分子间作用力减小,聚合物的拉伸强度 会降低,但冲击强度会提高;适度的交联可以有效地增加分子链间的联系,使分子链不易发生相对滑移,随着交联度的增加,强度增高,但过度的交联会使冲击强度降低。二次结构对聚合物强度的影响为:分子量对拉伸强度和冲击强度的影响为,当分子量低时,随分子量的增加,拉伸强度和冲击强度都会提高,但当分子量超过一定的数值以 后,拉伸强度的变化就不大了,而冲击强度则继续增大;同时分子量 分布也对聚合物强度有一定影响,对于平均分子量相同
23、而分子量分布 较宽的聚合物,其强度就比分子量分布窄的聚合物的强度低; 一般地 分子链的柔顺性增加聚合物的强度降低, 分子在各种环境中所采取的 构象间的位垒小,相当于分子链的柔顺性变好,聚合物的强度降低。 三次结构对聚合物强度的影响为:结晶度增加,对提高拉伸强度、弯 曲强度和弹性模量又好处,但结晶度太高,则要导致冲击强度和断裂 伸长率的降低;非晶态的增加会拉伸强度、弯曲强度和弹性模量降低,但适当增加非晶态的含量,能提高聚合物的冲击强度和断裂伸长率;使取向可以使材料的强度提高。十七、试分析高分子近程结构和远程结构对性能的影响。答:近程结构对聚合物性能的影响为:因为高分子具有强度在于主链的化学键力和
24、分子间力,所以增加高分子的极性或产生氢键可使强度提高,但如果极性基团过密或取代基团过大,阻碍链段运动,高分子的拉伸强度虽然大了,但材料变脆;主链含有芳杂环的聚合物,其强度和模量都比脂肪族主链的高; 分子链支化程度增加, 使分子间 的距离增加,分子间作用力减小,聚合物的拉伸强度会降低,但冲击强度会提高;适度的交联可以有效地增加分子链间的联系,使分子链 不易发生相对滑移,随着交联度的增加,强度增高,但过度的交联会使冲击强度降低。远程结构对聚合物性能的影响为: 分子量对拉伸强 度和冲击强度的影响为,当分子量低时,随分子量的增加,拉伸强度 和冲击强度都会提高,但当分子量超过一定的数值以后,拉伸强度的
25、变化就不大了, 而冲击强度则继续增大;同时分子量分布也对聚合物 强度有一定影响,对于平均分子量相同而分子量分布较宽的聚合物,其强度就比分子量分布窄的聚合物的强度低;一般地分子链的柔顺性增加聚合物的强度降低,分子在各种环境中所采取的构象间的位垒小,相当于分子链的柔顺性变好,聚合物的强度降低。十八、试从聚合方法、链结构、聚集态结构及性能等方面比较HDP审 LDPE答:从聚合方法、链结构、聚集态结构及性能等方面比较HDPE和 LDPE它们间的差别为: HDP助低压聚合,可采用溶液法、泥浆法及气相法工艺,催化剂采用 Zeigler 催化剂, 即过度金属氯化物和有机金属化合物,得到的 HDPE吉构比较规
26、整,含有少量短支链,分子量、密度、结晶度都比较高,质地坚硬, 软化温度与机械强度较高, 介电性能比 LDPE略差,耐化学腐蚀性能优于 LDPE LDPE采用高压气 相聚合工艺,催化剂为有机过氧化物,得到的 LDPE吉构规整性较差, 含有较多的短链分枝, 分子量、 密度、吉晶度较低, 分子量分布较宽, 质地柔软,透明性和加工性能优于 HDPE机械强度较差。十九、试扼要说明聚合物溶液或熔体的流变行为、 热稳定性和力 学性能与分子吉构和聚集态的关系答:聚合物溶液或熔体的流变行为、 热稳定性和力学性能与分子 结构和聚集态的关系为:( 1)分子量的影响,当分子量大于临界分子 量时,随分子量的增加,聚合物
27、的粘度急剧增加,当分子量小于临界分子量时,聚合物粘度随分子量增加而线性增加;分子量增加,聚合 物热稳定性增加; 当超过临界分子量以后, 聚合物才能显示出使用的 机械强度, 并且聚合物的机械强度随分子量的增加而很快增加, 但分 子量达到一定程度以后,机械强度与分子量的大小关系不大。 (2)分 子量分布的影响,在低剪切速率时,平均分子量相同的聚合物,分子 量分布宽的粘度较大, 但当剪切速率增加时,分布宽的聚合物粘度比 分布窄的聚合物粘度低; 分子量分布对热稳定性有明显影响, 分子量 分布宽,小分子量部分含量大,将降低聚合物的热稳定性;同时分子量分布宽有利于加工,但聚合物的强度会降低。(3)链支化的
28、影响, 一般地,当支链不太长时,链支化对聚合物粘度影响不大,对热稳定性和力学性能也影响不大;在分子量相同时,短支链的聚合物粘度比线性聚合物略低;当支链很长时,支化聚合物粘度比线性聚合物高很多,但长支链聚合物粘度对剪切速率的变化更敏感,在高剪切速率下,长支链聚合物粘度比线性聚合物粘度低,长支链结构有利于提高热稳定性和力学性能。( 4)其他结构因素,凡能使聚合物玻璃化转变温度 升高的因素, 往往也使聚合物粘度升高, 如对于分子量相同的两种聚 合物,分子链刚性、极性的增加,会使聚合物粘度增加,另外氢键和离子键的形成也会使聚合物粘度增加, 而这些因素的存在有利于提高 聚合物的热稳定性和拉伸强度、 弹性
29、模量等力学性能, 但会降低聚合 物的冲击强度。( 5)结晶及取向的影响,聚合物结晶度越大,聚合物 的粘度会增加, 而取向的形成会导致聚合物粘度降低, 结晶的存在和 增加有利于提高热稳定性和拉伸强度、 弹性模量等力学性能, 但会降 低聚合物的冲击强度, 取向的存在和提高有利于提高聚合物的热稳定 性,同时提高聚合物的力学性能。二十、高分子液晶的形成条件是什么?阐明液晶纺丝的原理以及 液晶纺丝对纤维的结构性能的影响。答:高分子液晶包括由升温至某一温度范围内使聚合物形成液晶态的热致型和由溶剂在一定浓度范围内成为液晶态的溶致型, 因此高 分子液晶的的形成条件就包括热和形成溶液。 液晶纺丝的原理为: 利
30、用液晶体系高浓度、 低粘度和低切变速率下的高取向度的特点, 解决 通常情况下难以解决的高浓度必然伴随高粘度的问题, 并且在较低的 牵引条件下, 获得较高的取向度, 避免纤维在高倍拉伸时产生应力和 受到损伤。 液晶纺丝能使纤维获得高取向, 避免纤维在高倍拉伸时产 生应力和受到损伤,使纤维的抗张强度得到大幅度提高。二十一、 . 聚丙烯酸钠水溶液经高速搅拌或在其中加入氯化钠, 溶液的粘度均下降,试通过结构表征,说明产生粘度下降的原因。答:可以通过光散射测定聚丙烯酸钠分子尺寸的变化来进行结构 表征,通过实验可以发现, 聚丙烯酸钠水溶液经高速搅拌或在其中加 入氯化钠后聚丙烯酸钠分子尺寸变小。 这是因为在
31、经高速搅拌或在其 中加入氯化钠后,使钠离子可以在聚阴离子链的外部和内部进行扩 散,因此有更多的钠离子能接近聚阴离子, 使部分阴离子静电场得到 平衡,聚合物链上的排斥作用减弱,分子链分子蜷曲,分子尺寸缩小,分子链间的作用减小,溶液粘度降低。2、试提出分析测试方法,说明互穿聚合物网络(IPN)比构成该IPN 的聚合物具有更好的阻尼性能。答:可以通过分别测定互穿聚合物网络( IPN)和构成该 IPN 的聚合物的力学损耗角随温度或频率的变化曲线,得到各自的损耗峰面积,通过比较损耗峰面积的大小可以知道互穿聚合物网络( IPN)比构成该 IPN 的聚合物具有更好的阻尼性能。二十二、试扼要叙述下列分析与表征
32、技术的基本原理及在聚合物研究方面的应用:( 1) TEM (2)偏光显微镜( PLM; (3) FTIR;(4) DSC( 5) UV (6) SALS(小角激光散射);( 7) GPC( 1) TEM原理为:当平行电子束遭遇到物质的散射作用而分裂成为各级衍射谱,各级衍射谱经过干涉重新在像平面上汇聚成诸像 点,从而形成带有物质结构信息的像。应用: 1)内部细微的形态与 结构; 2)聚合物的晶格; 3)聚合物网络; 4)微孔大小分布; 5)分 子量分布。( 2)偏光显微镜( PLM:原理:将显微镜上安装上一个起 偏器和一个检偏器, 当一束自然光通过起偏器后形成偏振光, 该偏振 光通过聚合物球晶时
33、将发生双折射,分成两束电矢量互相垂直的偏振 光,它们的电矢量分别平行和垂直于球晶的半径方向, 由于这两个方 向上折射率不同, 这两束光通过球晶后必然产生一定的相位差而发生 干涉作用,结果使通过球晶的一部分区域的光可以通过与起偏器出于 正交位置的检偏器, 而另一部分区域不能, 最后分别形成球晶照片上 的亮暗区域。应用:观察聚合物球晶的大小、形状、内部结构及生长 过程。 (3) FTIR:原理为:物质是由原子和分子组成的,在吸收一定 波长的光量子后,原子会发生振动,分子会发生转动,当吸收的光波 在红外区时, 这样的振动和转动不会引起化学键破坏, 而只引起键的 振动,不同的化学键对应于特定波长的红外
34、光, 也就是说当对物质在 一定区域内进行红外连续光谱辐照时, 不同的化学键对应于不同波长 的红外光吸收, 从而得到与物质结构有关的红外吸收光谱,根据光谱就可以得到有关物质结构的信息。 FTIR 就是红外光谱分析中的一种方法,其特点的快速、准确,并能反映聚合物结构的微小变化。应用:A)测端基计算聚合物的平均分子量;B)测定反应动力学及相对速度;C)测化学变化; D)测化学结构; E)测聚合物构型; F)测构象及结晶; G)测支化度; H)测聚合物共混; I)测分子间作用力等方面。(4) DSC DSC是热分析技术的一种,热分析技术的基础是当物质的物理状态或化学状态发生变化时,往往伴随着热力学性质
35、(如热焓、比热、导热系数等)的变化,因此通过测定其热力学性质的变化,可以了解物质的物理或化学变化过程,得到物质的有关结构信息。DSC 的特点是在相同的温度条件下, 采取热量补偿的方式保持两个量热器皿的平衡,从而测量试样对热能的吸收和放出,这样就能够精确迅速地测定热容和热焓。应用:1、测Tg、Tm、Td; 2、测结晶度及结晶动力学3、测共聚物结构及共混复合物的相分离行为4、测聚合物的热稳定性(如热氧化、热降解等)等方面。(5)UV原理:通过测定样品对紫外光和处于400-800nm的可见光的吸收情况,从而得到有关样品结构上的信息。应用:聚合物化学结构的鉴定。(6) SALS(小角 激光散射):原理
36、:用一束单色的激光对样品进行小角照射,通过测定激光的散射光得到有关样品结构的信息。应用:球晶结构的研究;结晶聚合物拉伸变形过程中球晶变化情况以及晶粒的取向的研究;聚 合物结晶过程、 球晶大小和形态以及球晶是生长速率的研究;用于共 混体系的研究等。( 7) GPC基本原理为:聚合物在有孔色谱柱上,经淋洗液淋洗时,不同分子量的聚合物被淋洗液淋出的先后顺序不同,分子量大的先被淋出,分子量小的后被淋出,利用该性质可以将化学性质相同,而分子体积不同的高分子同系物进行分离。如果用已知分子量的聚合物进行表定,就可根据淋出液的体积的大小得到被淋出高分子的分子量,从而得到有关高分子分子量及分子量分布的有关 信息。应用: 1、测分子量及分子量分布; 2、与粘度或分子量测定相 结合,研究聚合物的长链支化度; 3、测定高分子和共聚物的组成分 布; 4 分离高分子,制备标准样品等方面。二十三、试述聚合物取向对其力学性能和热性能的影响。 答:聚合物取向后, 材料的力学性能如抗张强度和挠曲疲劳强度 在取向方向上显著增加,而与取向方向相垂直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗影像委托协议书
- 古树加固复壮协议书
- 厂房安全隐患协议书
- 地主财产返还协议书
- 公司白酒加盟协议书
- 合同履约担保协议书
- 单位房屋分割协议书
- 土地延期开发协议书
- 土地过户合同协议书
- 厂房拆迁招标协议书
- 2025届陕西省安康市高三下学期适应性模拟考试历史试题(原卷版+解析版)
- 备战2025年高考数学(新高考专用)抢分秘籍导数及其应用(九大题型)(学生版+解析)
- 村干部测试试题及答案
- 康复医学教学课件 - 基础医学 - 医药卫生 - 专业资料
- 宁波市余姚市交通运输局招聘工作人员笔试真题2024
- 淘宝运营测试题及答案
- 领导司机入职合同协议
- 2025年广东省广州市天河区中考一模物理试题(含答案)
- 预收货款协议合同
- 急性心肌梗死诊断和治疗
- 2025年武汉铁路局集团招聘(180人)笔试参考题库附带答案详解
评论
0/150
提交评论