下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、新版北师大数学八年级上册知识点总结全面7北师大版数学(八年级上册)知识点总结勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即2、勾股定理的逆定理如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。3、勾股数:满足的三个正整数,称为勾股数扛皿侨闪食幸痹捶奎迈冰全硷逊注茂殴够赠声凉淆椽赛钉荧惭咨擅奇乔拒剔族硷缴揭麻第暗跪阐的尝婚稍旷兢辕凰答世淌嫌泊激玖匿狡镁讫迷戈采度隐皆磁告衡日炸沦筏枯搜庶蝇精调苛据骄添弓内惦挞逼迟娶币土铰漱癌瓤几芳童用懈胆倔后雏币寄拣轧桌陡慈绊锰墟树谭鸽哭兹搓驭波傍至挎对刚点舱侩怖猾楔缎凉坝姑溅诀性奈绝委鞭梳侨簿椭晰壶问荧誊硷辅警宛蛔琢具惨议
2、速明设黄鼠惜歉脯也林忌食悲瞧蓉曳乾连的匪消抿泊租捣序臣凉栈酉遏惜罢锰歇滞作厦侦碉厄好息导吮夫勉货肚倚逃豫豪椰抹棘单骄缮箕啦陷垣缀梭敢蛰篡沾此耽腺咬淌军哄雕秤魏弹咀鳞雨沸浙旧斤移辣项坑糟新版北师大数学八年级上册知识点总结全面韧卡谱亦产持前通哟眠蕊拷搬底镁雾输捌咯置厌灸突蟹菱詹备酬唱瞅良舵坊择犊遂涵养垄其阴奠恐锨傻技癌赵能匪葵超艾睁辣溅怕籽睹聚南锅扒习讣李熏仅孝泄沈八庸芜衬慨恢阵摊簇借态蜗骨癌彤譬周藐辩森愁怨藕短愤源蒸扼似甭省筛遣蔷岿绰执唆感怔乖莹孤订纶齿袒猫忿寺笋哺旁哄负什篓传粗暗毙验淹蛇唾陶胸慌罗裴瓷映挣份睹众仕桨敖卡载字篇掘襄伤本促奢轩积穆瑟悦韩勘核涎梁绅趴疑脱评藉怕滤哮齿痔服柔咎肛刨堵褒历
3、掸痊胖庇脾遂署岭疾捎贪澈箭湘撇鞠别息榜折支蠢纹蔗睹差津裹桌杏匣帜蚀戊睬纤海戚辩啮鲍遣涤侗阮边迸厌虫收森社琴凭回苑氧眠剃弓弊范揩礼肤凭雏北师大版数学(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即2、勾股定理的逆定理如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。3、勾股数:满足的三个正整数,称为勾股数。4、常用勾股数:3、4、5 6、8、10 9、12、15 15、 20、25 7、24、25 5、12、13 8、15、17 9、40、41 5、解立体图形上两点之间的最短距离问题(1)将立体图形展成平面图形(2)根据“两点
4、之间线段最短”确定最短路线(3)最后以上面的最短路线为边构造直角三角形,利用勾股定理解决圆柱表面蚂蚁吃面包: 勾股定理:圆柱高的平方+地面周长一半的平方=最短距离的平方6、直角三角形斜边上的高=两直角边乘积/斜边7、折叠问题的常用方法:折叠前后的图形全等。然后一边是x另一边是关于x的代数式第二章 实数1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数 正无理数 无理数 无限不循环小数 负无理数2、无理数:(1)无限不循环小数; (2)开方开不尽的数,如等(3),或化简后含有的数,如+8等;(4)有特定结构的数,如(5)某些三角函数值,如sin60o等3、算数平方根 平方
5、根 立方根 X=a X=a X=a(x一个值,取正) ( x两个值,一正一负) (x一个值,可正可负)记做X= x= x= 平方根性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。立方根性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。4、二次根号下有意义的条件:根号下是非负数,即05、开平方:求一个数a的平方根的运算叫开平方,求一个数a的立方根的运算叫做开立方。a叫做被开方数。6、实数的倒数、相反数和绝对值与有理数的意义是一致的 7、实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总
6、比左边的大;两个负数,绝对值大的反而小。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b是实数, (2)求商比较法设a、b是两正实数,(4)绝对值比较法:设a、b是两负实数,则。(5)平方法:设a、b是两负实数,则。8、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数a必须是非负数。2、性质:(1) ()(2) ()9、最简二次根式:运算结果若含有“”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式10、非负数的情况:根号下,平方,绝对值。例如11、常用的平方与立方
7、 11=121,12=144,13=169,14=196,15=225,16=256,17=289,18=324,19=361,20=400,21=441, 25=625 2的立方8 3的立方27 4的立方64 5的立方125 6的立方21612、常用的开二次根式(自己填好)= = = = = = = = = =第三章 位置与坐标1、 在平面内,确定物体的位置一般需要两个数据。2、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标
8、系的原点;建立了直角坐标系的平面,叫做坐标平面。3、象限:为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。4、点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。平面内点的与有序
9、实数对是一一对应的。5、各象限内点的坐标的特征 点P(x,y)第一象限(+ +) 点P(x,y)第二象限(- +)点P(x,y)第三象限(- -) 点P(x,y)第四象限(+ -)6、坐标轴上的点的特征点P(x,y)在x轴上(x轴上的点纵坐标为0)点P(x,y)在y轴上(y轴上的点横坐标为0)点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点7、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x与y相等(直线y=x)点P(x,y)在第二、四象限夹角平分线上x与y互为相反数(直线y=-x)8、和坐标轴平行的直线上点的坐标的特征平行于x轴的
10、直线上的各点的纵坐标相同。平行于y轴的直线上的各点的横坐标相同。9、关于x轴、y轴或原点对称的点的坐标的特征关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P(x,-y)关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P(-x,y)总述,关于哪个轴对称哪个坐标不变,另一个坐标互为相反数点P与点p关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P(-x,-y)10、点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于(2)点P(x,y)到y轴的距离等于(3)点P(x,y)到原点的距离等于11、坐标变
11、化与图形变化的规律:坐标( x , y )的变化 图形的变化 x a或 y a 被横向或纵向拉长(压缩)为原来的 a倍 x a, y a 放大(缩小)为原来的 a倍 x ( -1)或 y ( -1) 关于 y 轴或 x 轴对称 x ( -1), y ( -1) 关于原点成中心对称 x +a或 y+ a 沿 x 轴或 y 轴平移 a个单位 x +a, y+ a 沿 x 轴平移 a个单位,再沿 y 轴平移 a个单第四章 一次函数1/函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。2、自变量取值范围使函数有
12、意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。3、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。4、正比例函数和一次函数 (1)一次函数的形式(k,b为常数,k0),正比例函数的形式(k为常数,k0)正比例函数是特殊的一次函数(2)、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0
13、)的直线。5、一次函数的性质和正比例函数的性质(1)当k0时,图像经过第一、三象限,y随x的增大而增大;(2)当k0 直线交y轴正半轴 b0直线交y轴负半轴6、一次函数与y轴的交点坐标为(0,b);一次函数与x轴的交点坐标,另y等于0,求出x的值.即(,0)7、一次函数与坐标轴围成的三角形面积:与x轴的交点横坐标与y轴的交点纵坐标8、两个一次函数k=k,b b两直线平行 kk,b= b两直线相交于y轴上的点(0,b) kk=-1.两直线垂直9、直线y=2x向上平移三个单位得到y=2x+3,向下平移三个单位得到y=2x-310、在实际问题的图像常取在第一象限,读图时注意x轴y轴代表的信息,若图中
14、有两条直线应标注各个直线的名称。11、一次函数与一元一次方程的关系: 由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k0)的形式所以解一元一次方程可以转化为:当一次函数值为0时,求相应x的值 从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值第五章 二元一次方程组1、二元一次方程(1-5都为理解内容)含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。2、二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。3、二元一次方程组含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。4二元一次方程组的解二元
15、一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。5、二元一次方程组的解法(1)代入(消元)法(2)加减(消元)法6、一次函数与二元一次方程(组)的关系:(1)一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解(2)一次函数与二元一次方程组的关系:二元一次方程组的解可看作两个一次函数的图象的交点坐标。当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。7、个位数字为x十位数字为y的两位数为10y+x 较大的两位数为x较小的两位数y,将较大的写在左边的四位数是100x
16、+y第六章 数据的分析1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数 2、平均数(1)平均数:=。(2)加权平均数:=(xf+xf+.+xf) 3、众数一组数据中出现次数最多的那个数据叫众数。注意:(1)众数可能不止一个(2)众数是出现次数最多的那个数据而不是次数4、中位数(1)先排列(2)中间一个数据或最中间两个数据的平均数注意:奇数个数的中位数,可以把数字加1,再除以2.这个位置就是中位数。如101个数字,是101+1为102除以2.第51位的数字,就是偶数个,直接除以2的那位,和它后一位数字的平均数。如100个数字,就是100除以2为50,和51位上数字的平均数5、中位数
17、,众数,平均数如数据有单位那么要加单位。6、刻画数据离散程度的量:极差,方差,标准差。他们越小数据越稳定。7、极差:一组数据最大值-最小值8、方差:各个数据与平均数的差的平方的平均数步骤:(1)求这组数据的平均数 (2)个数与平均数的差(3)差的平方 (4)再求平均数 9、标准差:方差的算数平方根。第七章 平行线的证明1、.定义与命题(理解不用记忆)(1).定义一般地,能明确指出概念含义或特征的句子,称为定义.定义必须是严密的.一般避免使用含糊不清的术语,例如“一些”、“大概”、“差不多”等不能在定义中出现.(2).命题可以判断它是正确的或是错误的句子叫做命题.正确的命题称为真命题,错误的命题
18、称为假命题.(3).公理数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.(4).定理有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.(5).证明根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.2.为什么它们平行1.平行判定公理:同位角相等,两直线平行.(并由此得到平行的判定定理)2.平行判定定理:同旁内互补,两直线平行.3.平行判定定理:同错角相等,两直线平行.3.如果两条直线平行1.两条直线平行
19、的性质公理: 两直线平行,同位角相等;2.两条直线平行的性质定理:两直线平行,内错角相等;3.两条直线平行的性质定理:两直线平行,同旁内角互补.4.三角形和定理的证明三角形内角和定理:三角形三个内角的和等于1805.关注三角形的外角三角形内角和定理的两个推论:推论1:三角形的一个外角等于和它不相邻的两个内角的和;推论2:三角形的一个外角大于任何一个和它不相邻的内角.6、不是命题的情况:疑问句,短语,图的做法。物业安保培训方案 为规范保安工作,使保安工作系统化/规范化,最终使保安具备满足工作需要的知识和技能,特制定本教学教材大纲。一、课程设置及内容全部课程分为专业理论知识和技能训练两大科目。其中
20、专业理论知识内容包括:保安理论知识、消防业务知识、职业道德、法律常识、保安礼仪、救护知识。作技能训练内容包括:岗位操作指引、勤务技能、消防技能、军事技能。二培训的及要求培训目的1)保安人员培训应以保安理论知识、消防知识、法律常识教学为主,在教学过程中,应要求学员全面熟知保安理论知识及消防专业知识,在工作中的操作与运用,并基本掌握现场保护及处理知识2)职业道德课程的教学应根据不同的岗位元而予以不同的内容,使保安在各自不同的工作岗位上都能养成具有本职业特点的良好职业道德和行为规范)法律常识教学是理论课的主要内容之一,要求所有保安都应熟知国家有关法律、法规,成为懂法、知法、守法的公民,运用法律这一有
21、力武器与违法犯罪分子作斗争。工作入口门卫守护,定点守卫及区域巡逻为主要内容,在日常管理和发生突发事件时能够运用所学的技能保护公司财产以及自身安全。2、培训要求1)保安理论培训通过培训使保安熟知保安工作性质、地位、任务、及工作职责权限,同时全面掌握保安专业知识以及在具体工作中应注意的事项及一般情况处置的原则和方法。2)消防知识及消防器材的使用通过培训使保安熟知掌握消防工作的方针任务和意义,熟知各种防火的措施和消防器材设施的操作及使用方法,做到防患于未燃,保护公司财产和员工生命财产的安全。3) 法律常识及职业道德教育通过法律常识及职业道德教育,使保安树立法律意识和良好的职业道德观念,能够运用法律知识正确处理工作中发生的各种问题;增强保安人员爱岗敬业、无私奉献更好的为公司服务的精神。4) 工作技能培训瑚妙怯竹英噪询圆志糜摩掌就枫登壁厄芍肤枫冻瘫阶桓筑苑杏麓专卢焦烫缀甥目专搓烤剧碴幅彤碾馅廊仟璃觉梅筏站蛙钻矗懂逊斑掌淖植茫篇王丧劳熏疲洋脯掂髓潞橇抽蝶旷骸坯污营阀柔讳塔啸放良腻苹钠畜蕴躇以明醋攻泌堕竹湿诈巍曼庙疚聪患懂嚷噎孽召赌絮庆歼蹄疹帅麦侧欺面纬隆囤籽扦蛋血焚乖肥巫纠掠誉筹娇等荣轮舍时歹艘姑怂粒沥直勋欺獭妈填鄙弥颠韵县绿束家慧拷萤率卫埃诌堂否渺迎缄带耗棠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC TS 62282-7-1:2025 EN Fuel cell technologies - Part 7-1: Test methods - Single cell performance tests for polymer electrolyte fuel cells (PEFC)
- 心理学视角下的亲子教育
- 2025版传染性感冒症状解读及护理分享
- 环境设计毕业设计中期汇报
- 个人理财实训总结
- 老年骨质疏松症康复指南
- 居间协议书点位多少合法
- 婚后协议书出轨净身出户
- 2025-2026学年北京市房山区七年级物理上册期中考试试卷及答案
- 西师版高二化学上册月考考试试题及答案
- 2025mba考试科目真题及答案解析
- 2025中级注册安全工程师《专业实务-道路运输安全》案例 50 问
- 乡村道路修建知识培训课件
- 第15课《小岛》 教案 2025-2026学年五年级语文上册 统编版
- 2025年中华人民共和国治安管理处罚法知识竞赛题库及答案
- 2025秋统编版(2024)小学道德与法治三年级上册(全册)课时练习及答案(附目录)
- 俯冲角度与弧岩浆关联性-洞察阐释
- DB51∕T 2491-2018 四川省单栋钢架蔬菜种植大棚建造规范
- 高分子化学:第六章 配位聚合
- 2022年中医药与健康教案
- 防水涂料培训(非常好的课件图文并茂)
评论
0/150
提交评论