

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课题:3.1.1平均数1知识与技能:1、使学生理解数据的权和加权平均数的概念过程与方法:3、通过本节课的学习,使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。情感态度与价值观:能灵活应用一组数据平均水平解决实际问题教学重点 :会求加权平均数教学难点:对 “权”的理解教学过程:一课堂导入:问题1:一家公司打算招聘一名英文翻译。对甲、乙两名应试者实行了 听、说、读、写的英语水平测试,他们的各项成绩如下:应试者 听 说 读 写甲85 78 85 73乙73 80 82 831、如果这家公司想招一名综合水平较强的翻译, 计算两名应试者平均成 绩
2、,从他们的成绩看,应该录取谁?2、如果这家公司想招一名笔译水平较强的翻译,听、说、读、写的成绩 按照2:1:3:4的比确定,计算两名应试者平均成绩,从他们的成绩看,应 该录取谁?学生思考、讨论解答,教师更正解:1、甲的平均成绩=85+78+85+73/4=80.25乙的平均成绩=73+80+82+83/4=79.5因为.的平均成绩比.的高,所以应该录取2、甲的平均成绩=.乙的平均成绩=.?因为.的平均成绩比.的高,所以应该录取.。二、合作探究:1、议一议 :上叙问题1是利用平均数的公式计算平均成绩, 其中每 个数据一样重要。问题2呢?学生思考、分组讨论,之后,看课本p112面,理解“权”的意义
3、,以 及加权平均数的公式。三、交流展示:例1:课本p112面例题1学生分组讨论,小组发言,学生演板小结:1、解决例 1 要用到加权平均数公式,所以说它最直接、最重要的目的是 即时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。2、例 1 与问题 1 的区别主要在于权的形式又有变化,以百分数的形式出现,升华第周第 课时执笔人责任人2-2 -互动调控了学生对权的意义的理解。(3)、它也充分体现了统计知识在实际生活中的广泛应用。班级1 班2 班3 班4 班参考人数40424532平均成绩80818279例 2:某校初二年级共有 4 个班,在一次数学考试中参考人数和成绩如下:求
4、该校初二年级在这次数学考试中的平均成绩?下述计算方法是否合理?为什么?_ 1X=( 79+80+81+82)=80.54学生分组讨论,小组发言,学生演板四、归纳小结:1、平均数2、加权平均数的公式3、权的意义五、 当堂训练:一、必作题:1、某人打靶,有 a 次打中x环,b 次打中y环,则这个人平均每次中靶 _ 环。学生作业测验期中考试期末考试小关80757188小兵768068902、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占 30%、期中占 35%、期末考试占 35%,小关和小兵的成绩如下表:试问小关和小兵的成绩,哪个学期总平均分高?二、选做题:3、为了鉴定某种灯泡的质量
5、,对其中100 只灯泡的使用寿命实行测量,结果如下寿命450550600650700只数2010301525表:(单位:小时)求这些灯泡的平均使用寿命?板书设计:第二十章数据的分析20.1.11、问题124、平均数5教学反思:平均数、例13加权平均数的公式、例26、权的意义课 题: 3 1 1 平均数知识与技能:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值过程与方法:通过对加权平均数的理解,根据频数分布表求加权平均数,从而解决一些实际问题情感态度与价值观:用频数分布表求加权平均数,培养学生解决实际问题水平教学重点:根据频数分布表
6、求加权平均数教学难点:根据频数分布表求加权平均数教学方法:创设情景-观察思考一分析讨论-归纳总结一得出结论教学过程:一课堂导入:问题1: 上节课我们学习了平均数、加权平均数的公式、权的意义,你能说说平均数、加权平均数的公式吗?权的意义呢?学生思考、讨论后,这节课我们继续学习求加权平均数的方法二、合作探究:1、议一议:看课本p113.114面内容。回答:x= ?学生看书思考、分组讨论后,小组发言2、 例1:某跳水队为了解运动员年龄情况,调查如下:13岁8人,14岁16人,15岁24人,16岁2人,求跳水队运动员的平均年龄。解:跳水队运动员的平均年龄为X=13*8+14*16+15*24+16+2
7、/=14岁3、 例2:为了解5路公共汽车运输情况,公司统计了某天5路公共汽车 每个运行班次的载客量,这天5路公共汽车平均每班的载客量是多少?载客量/人组中值蘋数/班次1$ v 2111321$ V 4131541$ v 61512061$ v 81712281$ v 1019118101$v12111115提问:1、依据统计表能够读出哪些信息?2、这里的组中值指什么,它是怎样确定的?3、第二组数据的频数 5 指什么呢?4、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么 关系?解:X=11*3+31*5+51*20+71*22+91*18+111*15/=73 人答:.第 周第
8、 课时执笔人责任人-4 -互动调控三、交流展示:例3、课本p115面例3学生分组讨论,小组发言,学生演板四、归纳小结:1、平均数2、加权平均数的公式3、权的意义4、组中值、蘋数的意义五、 当堂训练:一、必作题:1、某校为了了解学生作课外作业所用 时间的情况,对学生作课外作业所用时间实行 调查,下表是该校初二某班 50 名学生某一天做 数学课外作业所用时间的情况统计表(1 )、第二组数据的组中值是多少?(2) 、 求该班学生平均每天做数学作业所用时 间二、选做题:2、下表是截至到 2002 年费尔兹奖得主获奖 时的年龄,根据表格中的信息计算获费尔兹奖得 主获奖时的平均年龄?3、为调查居民生活环境
9、质量,环保局对所辖的50 个居民区实行了噪音(单位:分贝)水平的 调查,结果如下图,求每个小区噪音的平均分贝噪音/分贝板书设计:3.1.1 平均数1、X=. ?2、例 1教学反思:题:所用时间 t(分钟)人数0Vt10410vt0620Vt 茅 01430Vtw401340Vtw50950Vtw604年龄频数28WXV30430WXV32332wxv34834wxv36736wxv38938wxv401140wxv4223、例 24、例 33.1.2 中位数和众数知识与技能:进一步理解平均数、众数、中位数都是代表数据的集中趋势过程与方法:理解中位数和众数的意义和作用。利用求出一组数据中的众数和
10、中位数,协助人们在实际问题中分析并做出决策情感态度与价值观:、会利用中位数、众数分析数据信息做出决策。解决实际问题。教学重点:理解中位数、众数这两种数据代表教学难点:利用中位数、众数分析数据信息做出决策教学方法:创设情景-观察思考一 分析讨论-归纳总结一得出结论教学过程:一课堂导入:问题1下表是某公司员工月收入的资料月收入 / 元 45000 18000 10000 5500 5000 3400 3000 1000人数 1113 6 1 11 11、 计算这个公司员工月收入的平均数;2、 若用1中的平均数反映公司全体员工月收入水平,你认为合适吗? 学生解题思考、讨论分析因为平均数不能反映公司全
11、体员工月收入水平,即事物的本质,所以今 天我们继续学习新的知识:众数、中位数。二、合作探究:1、议一议:看课本p 116.118面内容,并回答:1、什么叫中位数?什么叫众数?2、怎样求中位数、众数?3、用中位数、众数分析数据信息时,与平均数比,有什么优缺点?平均数:计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值 的影响较大众数:是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不 受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响平均数:的大小与一组数据中的每个数据均相关系,任何一个数据的变动都会相对 应引起平均数的变动中位数:仅与数据的排列位
12、置相关,某些数据的移动对中位数没有影响,中位数可 能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时, 可用中位数描述其趋势三、交流展示:例4、在一次男子长跑比赛中,抽得12名选手所用时间/min136 140 129 180 124 154 146 145 158 165 175 1801、样本数据12名选手所用时间的中位数是多少?2、一名选手的成绩是142min,他的成绩如何?解:1、将数据按从小到大的顺序排列:第 周第 课时执笔人责任人-6 -124 129 136 140 145 146 148 154 158 165 175 180所以:这组数据的中位数是:1
13、46+148/2=1472、学生解题思考、讨论分析,并演板例5、一家鞋店在一段时间内销售了某种女鞋30双,尺码与销售量如下表:尺码/cn 22 22.5 23 23.5 24 24.5 25销售量/双12511731你能根据表中的数据为这家鞋店提供进货建议吗?学生解题思考、讨论分析,并演板四、 归纳小结:1、什么叫平均数?中位数?众数?2、平均数、中位数、众数分析数据信息时,有什么优缺点?五、 当堂训练:一、必作题:1、数据 8、9、9、8、10、8、99、8、10、7、9、9、8 的中位数是 _,众数是_2、 一组数据 23、27、20、18、X、12,它的中位数是 21,则 X 的值是_3
14、、 数据 92、96、98、100、X 的众数是 96,则其中位数和平均数分别是()A.97、96B.96、96.4C.96、97D.98、974、 某公司销售部有营销人员15 人,销售部为了制定某种商品的销售金额,统计 了这 15 个人的销售量如下(单位:件)1800、 510、 250、 250、 210、 250、 210、 210、 150、 210、 150、 120、 120、 210、 150求这 15 个销售员该月销量的中位数和众数。假设销售部负责人把每位营销员的月销售定额定为320 件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。二、选做题:5、 某商店
15、3、4 月份出售某一品牌各种规格的空调,销售台数如表所示:1 匹1.2 匹1.5 匹2 匹3 月12 台20 台8 台4 台4 月16 台30 台14 台8 台根据表格回答问题:商店出售的各种规格空调中,众数是多少?假如你是经理,现要进货,6月 份 在 有 限 的 资 金 下 进 货 单 位 将 如 何 决 定 ?板书设计:互动调控3.1.2 中位数和众数1、中位数、众数2、例43、例54、小结教学反思:知识与技能:进一步理解平均数、众数、中位数都是数据的代表。过程与方法:、通过本节课的学习还应了解平均数、中位数、众数在描述数据时的 差异情感态度与价值观:、能灵活应用这三个数据代表解决实际问题
16、教学重点 :了解平均数、中位数、众数之间的差异。教学难点:灵活使用这三个数据代表解决问题。教学方法:创设情景 - 观察思考 - 分析讨论 - 归纳总结 - 得出结论教学过程:一课堂导入:问题1:之前我们学习了平均数、众数、中位数,它们在描述一组数据时各有 不同,你能说出它们的不同之处吗?学生思考、讨论后,回答今天我们继续学习平均数、众数、中位数。二、合作探究:1、议一议 :平均数: 计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极 端值的影响较大 .。平均数的大小与一组数据中的每个数据均相关系, 任何一个数据的变 动都会相对应引起平均数的变动 .中位数: 仅与数据的排列位置相关,某
17、些数据的移动对中位数没有影响,中位 数可能出现在所给数据中也可能不在所给的数据中, 当一组数据中的个别数据变动较大 时,可用中位数描述其趋势 .众 数: 是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众 数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响 .三、交流展示:1、平均数 、中位数 、众 数都能够反映一组数据的集中趋势。它们各有自己的 特点,能够从不同的角度提供信息,在实际应用中,需要分析具体问题的情况,选择适 当的量反映数据的集中趋势。2、例6: 某商场服装部为了调动营业员的积极性,决定实行目标管理,根据 目标完成情况对营业员实行适当的奖励,为了
18、确定一个适当的月销售目标,商场服装 部统计了每个营业员在某月的销售量 /万元,如下表:1718 16 13 24 15 28 26 18 19 22 17 16 19 3230 16 14 15 26 15 32 23 17 15 15 28 28 16 19题:3.1.2 中位数和众数第 周第 课时执笔人责任人-8 -问: 1、销售量在哪个值的人数最多?中间的月销售量是多少?平均月销售量是多 少?2、如果想确定一个较高的月销售目标,你认为月销售量定为多少合适?说明 理由。3、 如果想要一半左右的营业员都能达到销售目标, 你认为月销售量定为多少 合适?说明理由。分析: 1、第一问是在巩固平均数
19、定义、中位数定义和众数的定义。能够引导学生从问题中词语特点分析它们分别指哪个数据代表,教师也能够顺便加一个发散性问题, 一般地哪些词语是指平均数、中位数和众数呢?2、第二问学生一般不易想到,教师要将较高目标”衡量标准引向三个数据代表身上,这样学生就不难回答了。3、第三问要抓住一半左右应与哪个数据代表的意义相符这个问题。即要很好的回 答第三问,学生头脑必须很清楚平均数、中位数、众数的特点。学生分别求出平均数、中位数、众数后,分小组讨论,学生口头作答,教师定证后看书p119.12O,理解答题语言。四、归纳小结:本节课你学习了哪些知识?还有哪些你不清楚的?五、当堂训练:一、必作题:1、公园里有甲、乙
20、两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)甲群:13、13、14、15、15、15、16、17、17。乙群:3、4、4、5、5、6、6、54、57。(1 )、甲群游客的平均年龄是 _ 岁,中位数是 _ 岁,众数是 _岁,其中能较好反映甲群游客年龄特征的是 _ 。(2)、乙群游客的平均年龄是 _ 岁,中位数是 _ 岁,众数是 _ 岁。其中能较好反映乙群游客年龄特征的是 _。二、选做题:2、某公司的 33 名职工的月工资(以元为单位)如下:职员董事长副董事长董事总经理经理管理员职员人数11215320工资5500500035003000250020001500(1)、求该公司职员月工
21、资的平均数、中位数、众数?(2) 、假设副董事长的工资从 5000 元提升到 20000 元,董事长的工资从 5500 元提升到30000 元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?3、在一次环保知识竞赛中,某班50 名学生成绩如下表所示:得分5060708090100110120人数2361415541分别求出这些学生成绩的众数、中位数和平均数板书设计:3 1 2 中位数和众数1、平均数、中位数、众数2、例 6教学反思:互动调控第 周第 课时执笔人责任人-10 -课 题:3.2数据的波动水准方差5知识与技能:
22、了解方差的定义和计算公式。过程与方法:理解方差概念的产生和形成的过程。情感态度与价值观:会用方差计算公式来比较两组数据的波动大小教学重点:方差产生的必要性和应用方差公式解决实际问题教学难点:理解方差公式创设情景-观察思考-分析讨论-归纳总结-得出结论甲的平均产量高,但与乙的平均产量相差不大甲种甜玉米种子的波动较大,由此可知,在试验田中,乙种甜玉米种子的产量比较稳定,所以能够推测,在这个地区种植乙种甜玉米的产量比甲种的稳定,能够推测这个地区比较适合种植乙种甜玉米。2、 方差:一组数据 n 个数的每一个数与这组数据的平均数的差的平方的和的n 分 之一。公式见课本 p125 面3、 方差越大,数据的
23、波动越大;、方差越小,数据的波动越小三、交流展示:例1:在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧天鹅湖, 参加表演的女演员的身高/cm如下表:甲163164164165165166166 167教学方法:教学过程:一课堂导入:在统计学中,除了平均数、中位数、众数这类描述一组数据集中趋势的量以外,还有一类描述一组数据波动水准的量,其中最重要的是方差,今天我们就学习方差的意 义及使用。问题1;那么,什么是方差呢?怎样使用方差解决实际问题呢?请思考下面的问题。学生思考、讨论后,二、合作探究:1、议一议:农科院计划为某地选择合适的甜玉米种子,产量和产量的稳定性是农科院所关心的问题,为了解甲、
24、乙两种甜玉米种子的相关情况,农科院各用10 块自然条件相同的试验田实行试验,得到各试验田每公倾的产量甲7.65 7.507.627.597.657.647.507.40乙7.55 7.567.537.447.497.527.587.46根据这些数据估计,农科院应该选择哪种甜玉米种子呢?学生思考、讨论后, 义与性质。解:依题意可得:看书p124.125面内容,2甲=7.54、 S甲=0.01、x乙/t 如下:7.417.417.537.49得出解题方法及方差的定=7.52、S乙=0.002第 周第 课时执笔人责任人-12 -乙163165165 166166167168168那个芭蕾舞女演员的身
25、高更整齐?学生思考、分组讨论、交流展示、学生板书 解:依题意可得:2 2X甲=165、S甲=1.5、X乙=166、S乙=2.5/ S甲 S乙甲芭蕾舞女演员的身高更整齐例2:见课本 p12: 7 面.学生思考、分组讨论、交流展示、学生板书四、归纳小结:1、方差的计算公式?2、方差越大,数据的波动越大;、方差越小,数据的波动越小五、当堂训练:一、必作题:1.、已知一组数据为 2、0、-1、3、-4,则这组数据的方差为 _。2、甲、乙两名学生在相同的条件下各射靶10 次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7经过计算,两人射击环数的平均
26、数相同,但S 甲S乙,所以确定 _去参加比赛。3.、甲、乙两台机床生产同种零件,10 天出的次品分别是()甲:0、1、0、2、2、0、3、1、2、4乙:2、3、1、2、0、2、1、1、2、1分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?二、选做题:4、小爽和小兵在 10 次百米跑步练习中成绩如表所示:(单位:秒)小爽10.810.911.010.711.111.110.811.010.710.9小兵10.910.910.810.811.010.910.811.110.910.8如果根据这几次成绩选拔一人参加比赛,你会选谁呢?板书设计:3.2数据的波动水准方差1、方差的计
27、算公式 2、方差越大,数据的波动越大;、方差越小,数据的波动越小互动调控第 周第 课时执笔人责任人-14 -3、问题4、例15、例2教学反思:、填空题第三章数据的分析测试1平均数、中位数和众数1 .某公园对游园人数实行了10 天统计,结果有 4 天是每天 900 人游园,有 2 天是每天1100 人游园,有 4 天是每天 800 人游园,那么这 10 天平均每天游园人数是 _人.2 .如果 10 名学生的平均身高为 1.65 米,其中 2 名学生的平均身高为 1.75 米,那么余下 8 名学生的平均身高是_米.3 .某校规定学生的学期体育成绩由三部分组成:体育课外活动占学期成绩的10%,理论测
28、试占 30%,体育技能测试占 60%, 一名同学上述三项成绩依次为 90, 92, 73 分,则这名同学本学期的体育成绩为 _ 分,能够看出,三项成绩中 _ 的成绩对学期成绩的影响最大.4.如果一组数据中有3 个 6、4 个1 , 2 个2、1 个 0 和 3 个 X,其平均数为 x,那么 x=.5.某次射击训练中,一小组的成绩如下表所示:环数/环6789人数/人132若该小组的平均成绩为 7.7 环,则成绩为 8 环的人数是 _ .6 .在一次中学生田径运动会上,参加男子跳高的17 名运动员的成绩如下:成绩/米1.501.601.651. 701.751.801.851.90人数从23234
29、111那么运动员成绩的众数是 _,中位数是 _ ,平均数是 _.7.如果数据 20, 30, 50, 90 和 x 的众数是 20,那么这组数据的中位数是 _ ,平均数是_ .&在一组数据中,受最大的一个数据值影响最大的数据代表是 _ .9.数据 2, 2, 1, 5, 1, 1 的众数和中位数之和是_ .10._ 已知 7, 4, 5 和 x 的平均数是 5,贝 U x=_ .二、选择题11. 为了解乡镇企业的水资源的利用情况,市水利管理部门抽查了部分乡镇企业在一个月中的用水情况, 其中用水 15 吨的有 3 家,用水 20 吨的有 5 家,用水 30 吨的有 7 家,那么平均每家企
30、业 1 个月用水().(A)23.7 吨(B)21.6 吨(C)20 吨(D)5.416 吨12.m 个 X1, n 个 X2和r 个 X3,由这些数据组成一组数据的平均数是().X1X2X3m nx2rx33mxnx2rx3m+n+r13. 一次考试后,某学习小组组长算出全组 5 位同学数学的平均分为 M,如果把 M 当 成另一个同学的分数,与原来的 5 个分数一起,算出这 6 个分数的平均数为 N,那么 M :N 为().(A)5 : 6(B)1 : 1(C)6 : 5(D)2 : 114.某辆汽车从甲地以速度 V1匀速行驶至乙地后,又从乙地以速度V2匀速返回甲地,(A)V V2V2V1V
31、2(B)w v2(C)Vv2215.某同学在用计算器求30 个数据的平均数时,错将其中一个数据么由此算出的平均数与实际平均数的差为().(A)3(B) 3(C)3.5心2VM(D)V1v2105 输入为 15,那(D) 3.5第 周第 课时执笔人责任人-16 -16 .某班第一小组 7 名同学的毕业升学体育测试成绩(满分 30 分)依次为:25, 23 , 25,12请你根据以上提供的信息解答下列问题:(1)_此次竞赛中,2 班成绩在 C 级以上(包括 C 级)的人数为 _(2)请你将表格补充完整:(3)请从下列不同角度对这次竞赛成绩的结果实行分析:1从平均数和中位数的角度来比较1 班和 2
32、班的成绩;2从平均数和众数的角度来比较1 班和 2 班的成绩;3从 B 级以上(包括 B 级)的人数的角度来比较 1 班和 2 班的成绩.互动调控23, 27, 30, 25,这组数据的中位数和众数分别是()(A)2325(B)2323(C)2523(D)2525三、解答题日期15 日16 日17 日18 日19 日20 日21 日22 日天然气表读数(单位:m3)22022924124925927027929018 某中学要召开运动会, 决定从九年级全部的 150 名女生中选 30 人,组成一个花队(要 求参加花队的同学的身高尽可能接近)现在抽测了 10 名女生的身高,结果如下(单位: 厘米
33、):166154151167162158158160162162.(1)依据数据估计,九年级全体女生的平均身高约是多少这 10 名女生的身高的中位数和众数各是多少(3)请你依据本数据,设计一个挑选参加花队的女生的方案.(要简要说明)19 某同学为了完成统计作业的耗电量,数据如下(单位:度):(1)写出上表中数据的众数和平均数;,对全校的耗电情况实行调查他抽查了10 天中全校每天度数9093102113114120天数112312(2)由(1)获得的数据,估计该校一个月(按 30 天计算)的耗电量;若当地每度电的定价是0.5 元,写出该校应付的电费y(元)与天数 x(取正整数)之20 .在学校组
34、织的“喜迎奥运,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为 A, B, C, D 四个等级,其中相对应等级的得分依次记为100 分,90 分,80 分,70 分.学校将某年级的 1 班和 2 班的成绩整理并绘制成如下的统计图:平均数/分中位数/分众数/分1 班87.6902 班87.6100小明的父亲买了一张面值600 元的天然气使用卡,已知天然气每立方米1.70元,请估计这张卡是否够小明家用一个月(按 30 天计算),将结果填在后面的横线上.(只填“够”或“不够”)结果为:_并说明为什么.I 曲成绩筑计2班矗琐统计第 周第 课时执笔人责任人-18 -第三章数据的分析测试2方差1
35、2一、填空题1.一组数据 100, 97, 99, 103, 101 中,方差是 _.2数据 1, 3, 2, 5 和 x 的平均数是 3,则这组数据的方差是 _ .3 .个样本的方差S2=丄(X1 3)2+ (x2 3)2+ (xn 3)2,则样本容量是 _,12样本平均数是_.4 .随机从甲、乙两块试验田中各抽取100 株麦苗测量高度,计算平均数和方差的结果:X甲= 13,X乙= 13,S甲=3.6,S:= 15.8,则小麦长势比较整齐的试验田是 _5._ 把一组数据中的每个数据都减去同一个非零数,则平均数 _ ,方差_ .6._ 已知一组数据 1, 2, 0, 1 , x, 1 的平均数是 1,则这组数据的极差为 _.7. 样本数据 3,6, a, 4, 2 的平均数是 5,则这个样本的方差是 _.&样本数据 3,6, a, 4, 2 的平均数是 5,则这个样本的方差是 _.9. 已知样本 X1、X2,,Xn的方差是 2 ,则样本 3x1+ 2 , 3x2+ 2 ,,3Xn+ 2 的方差是.10.如图, 是甲、 乙两地 5月上旬的日平均气温统计图,则甲、乙两地这6 天日平均气温的方差大小关系为:s甲_S乙(填“V”或“”号),甲、乙两地气温更稳定的是:甲地 乙地10 题20 题二、选择题11. 一组数据1 ,(A)1 个12. 已知样本数据(A)平均数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陇南2025年陇南市事业单位高层次人才和急需紧缺专业技术人才引进(第一批)笔试历年参考题库附带答案详解
- 安徽工程大学《工程训练(Ⅰ)》2023-2024学年第二学期期末试卷
- 山西管理职业学院《循证护理学》2023-2024学年第二学期期末试卷
- 重庆电力高等专科学校《成衣纸样分析》2023-2024学年第二学期期末试卷
- 山东电子职业技术学院《新媒体导论》2023-2024学年第二学期期末试卷
- 新疆能源职业技术学院《德语入门》2023-2024学年第二学期期末试卷
- 辽宁石油化工大学《产品设计色彩计划》2023-2024学年第二学期期末试卷
- 哈尔滨北方航空职业技术学院《虚拟现实开源系统开发》2023-2024学年第二学期期末试卷
- 河北大学工商学院《医疗保险》2023-2024学年第二学期期末试卷
- 聊城职业技术学院《工程设计》2023-2024学年第二学期期末试卷
- 个性化家庭医生签约服务包
- 上本科毕业设计五指灵巧手的结构设计与分析
- GA∕T 1622-2019 法庭科学 生物检材中沙蚕毒素、杀虫双、杀虫环和杀螟丹检验 气相色谱、气相色谱-质谱和液相色谱-质谱法
- 国际商事仲裁法
- 区域电力系统规划设计开题报告
- 汽车维修管理制度管理办法汇编
- 02-新版3合1及50430内审检查表
- 全国普通高等学校本专科毕业生就业协议书(填写模板)
- ERP生产管理系统用户手册(共51页)
- 封条模板(A3纸)
- 无机化学 第18章 氢和稀有气体
评论
0/150
提交评论