电大弹性力学课程行考作业2_第1页
电大弹性力学课程行考作业2_第2页
电大弹性力学课程行考作业2_第3页
电大弹性力学课程行考作业2_第4页
电大弹性力学课程行考作业2_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、姓名:学号:得分:教师签名:电大弹性力学课程(选修)形考作业2第二章平面问题的基本理论一、单项选择题(每题2分,共36分)1 .平面问题一般可分为两类,一类是平面应力问题,另一类是平面(CA压力问题B内力问题C应变问题D形变问题2 .平面(A)问题弹性体的特征:弹性体是等厚薄板,长和宽的尺寸远大于厚度。A应力B应变C压力D形变3 .平面应力问题的特征:应力分量错误!未找到引用源。、错误!未找到引用源。、错误!未找到引用源。(B),错误!未找到引用源。不为零。A不为零B全为零C不全为零D无法确定4 .平面应变问题的特征:体力、面力和约束平行于(D)而且不沿长度变化。A纵截面B表面C对称面D横截面

2、5 .平面应变问题的特征:应力分量错误!未找到引用源。一般(B)零、错误!未找到引用源。、错误!未找到引用源。全为零,错误!未找到引用源。为零。A不等于B全为C小于D大于6 .经过P点的某一斜面上的切应力等于零,则该斜面上的正应力称为P点的一个(B),而该斜面称为在P点的一个应力主面,该斜面的法线方向称为在P点的一个应力主向。A主力B主应力D主矩C主矢7 .平面问题中应力分量与体力分量之间的关系式,即平面问题中的(A几何方程B物理方程C边界条件D平衡微分方程8 .平衡微分方程不含弹性常数错误!未找到引用源。、错误!未找到引用源。对于不同材料建立的平衡微分方程是(A)A相同的C不精确的B不同的D

3、不平衡的9 .平面问题的平衡微分方程含有三个应力分量未知数,求应力分量的的问题是(B)A静定问题C几何问题10 .两个主应力也就是最大与最小的(A主矢C正应力B超静定问题D物理问题D)B主矩D切应力11 .在一个应力主面上,由于切应力等于零,全应力就等于该面上的(A正应力C应力主向B切应力D应力分量12 .两个主应力1和错误!未找到引用源。与错误!未找到引用源。和错误!未找到引用源。之间存在的关系(DA错误!未找到引用源。-错误!未找到引用源。-错误!未找到引用源。C错误!未找到引用源。+昔误!未找到引用源。-错误!未找到引用源。B错误!未找到引用源。-错误!未找到引用源。+昔误!未找到引用源

4、。D错误!未找到引用源。+错误!未找到引用源。+昔误!未找到引用源。13.主应力和应力主向取决于弹性体的外力和约束条件,与坐标系的选取(BA有关C相同14.变形协调方程又称为(A相容方程C物理方程B无关D相反),表示物体三个形变分量之间满足的关系式。B几何方程D平衡方程15 .物理方程又称为本构关系方程,表示应力分量与(B)分量之间的关系式。A外力C位移16 .弹性常数错误!未找到引用源。源。之间的关系式(A)B应变D荷载、错误!未找到引用源。、错误!未找到引用B错误!未找到引用源。A错误!未找到引用源。C错误!未找到引用源。D错误!未找到引用源。17 .位移分量完全确定时,形变分量(D即完全

5、确定)。当形变分量完全确定时,位移分量(不能确定)。A不能确定、完全确定B不能确定、不能确定C完全确定、完全确定D完全确定、不能确定18 .结构中开设孔口或不开设孔口,两者的应力在孔口附近区域(B别。A有微小B有显著C没有D不能确定2、 填空题(每空1分,共12分)1 .平面应力问题的特征:弹性体只在(板边上)受有面力或约束,体力和面力均(平行)于板面并且沿厚度均布,厚度方向上无体力无面力作用,即错误!未找到引用源。2 .平面应变问题的特征:弹性体是很长的等截面(柱形体),即沿长度方向的尺寸远大于横截面尺寸,并且横截面形状和尺寸沿长度方向(不变)。3 .几何方程即微分线段上的(形变)分量与(位

6、移)分量之间的关系式。4 .边界条件表示在边界上位移与约束,或应力与面力之间的关系式。它可以分为(应力边界条件)、(位移边界条件)和(混合边界条件)。5 .单连体即只有一个连续边界的物体;(多连体)即具有两个或两个以上的连续边界的物体,如有孔的物体。6 .平面问题的几何学方面,指微分线段上的(形变)分量与(位移)分量之问的关系式,即平面问题中的几何方程。3、 简答题(每题7分,共35分)1 .请分别写出平面问题的平衡微分方程、几何方程以及物理方程。答几何方程描述的是应变与位移的关系物理方程描述的是应力分量和应变分量之间的关系(1)平衡方程平衡方程描述的是应力与体力之间的关系。几何方程物理方程j

7、j,fx=0xx二yCT7yfy=0yx二y未知量数:'一x,'y,xy,::u;x=二x::v;y二一y二y::v::ui=十xy-二x二vx,y,xy,U,Vy1 ,(:)xexy/1,;=(-J;)yEyx)xy二jxy在适当的边界条件下,上述8个方程可解2 .请写出平面问题的应力边界条件给定已知的面力分量为fx,fy边界上应力分量为(仃x(by)s,(Oz)s"xaf=*&x八=lx<+/巴中上式中电工_P.=f-Py=fybk=(bJ?、(7=(by1"立=(二安>得到上_Z(r)+=f、x产s:、xyJk"7(仃尸打

8、+(物)¥£L、m为边界外法线关于x、y轴的方向余弦。a、在边界上取出一个微分体,考虑其平衡条件,便可得出应力边界条件或其简化式;b、在同一边界面上,应力分量应等于对应的面力分量(数值相同,方向一致)例如:由于面力的数值和方向是给定的,因此,在同一边界面上,应力的数值应等于对应的面力的数值,而面力的方向就是应力的方向在斜面上(Px)s=fx,(Py)s=fy3 .请写出平面问题的形变协调方程(相容方程)变形协调方程或相容方程加dv%三一4=-dx效相容方程(形变协调方程)才d2d21、n(exarVdxjexcy;(平面应力情形)(2-23)要使得满足几何方程的位移存在且是

9、单值的,应变分量之间必须满足一定的条件4 .请回答什么是平面问题中的平衡微分方程,通过平衡微分方程是否可以求解相容方程(形变协调方程)说明Cl对位移边界问题,不易接应力求解.(2)对应力边界问题,且为单连通祠题,满足上述方程的解是唯一正确解。(3对多连通问题,满足上述方程外,还需满足位移单值条一八件,才是唯一正确解.5 .简要说明什么是圣维南原理以及圣维南原理的推广?圣维南原理如果把物体的一小部分边界上的面力,变化为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同)那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计特别注意圣维南原理只能应用于一小部分边界上(又称局部边界、

10、小边界和次要边界)圣维南原理推广如果物体一小部分边界上的面力是一个平衡力系(主矢量及主矩都等于零),那么这个面力就只会使近处产生显著的应力而远处的应力可以不计4、 应用题(每题8.5分,共17分)1 .列出下图所示问题的全部边界条件。在其端部边界上应用圣维南原理列出三个积分的应力边界条件。h(haAb)【分析】有约束的边界上可考虑采用位移边界条件,若为小边界也可写成圣维南原理的三个积分形式,大边界上应精确满足公式(2-15)。【解答】图2-17:y=0)左(x=0)右(x=bl0-11m-100fxs0:gyN-pgyNfys:gh100代入公式(2-15)得在主要边界上x=0,x=b上精确满

11、足应力边界条件:二xxf=Dg(yh),xyxz0=0;二xxa=-:g(y.hi),xyxJ0;在小边界y=0上,能精确满足下列应力边界条件:二y3一gh-xy片=0在小边界y=h2上,能精确满足下列位移边界条件:uy=0,vy=0这两个位移边界条件可以应用圣维南原理,改用三个积分的应力边界条件来代替,当板厚6=1时,可求得固定端约束反力分别为:Fs=0,Fn-ghb,M=0由于y=h2为正面,故应力分量与面力分量同号,则有:b一匕2dx="ghibb700必XdX=0b(%)dx=00xyy=h22 .列出下图所示问题的全部边界条件。在其端部边界上应用圣维南原理列出三个积分的应力

12、边界条件。qQj上下主要边界y=-h/2,y=h/2上,应精确满足公式(2-15)lm工(s)Eh0-10qh201-q10(Oy)y=h/2=一q,("yx)y=h/2=0,(°y)yda/2=0,(yx)yda/2-Ql在x=0的小边界上,应用圣维南原理,列出三个积分的应力边界条件:xx二E(;-负面上应力与面力符号相反,有,h/2(ho(Txy)x-0dxFSh_2/2一h/2/2(二x)x卫dx=-Fnh/2L(Ox)xqydx=MJ_h/2,/,J在x=l的小边界上,可应用位移边界条件uxg=0,vx=0这两个位移边界条件也可改用三个积分的应力边界条件来代替。首先,求固定端约束反力,按面力正方向假设画反力,如图所示,列平衡方程求反力:FFx=0,Fn+FN=q11nFN=q1l

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论