




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、概率论与数理统计(经管类)考试题型分析:题型大致包括以下五种题型,各题型及所占分值如下:由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、概率论与数理统计(经管类)考试重点说明:我们将知识点按考查几率及重要性分
2、为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率1.随机事件的关系与计算P3-5(一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念2.古典概型中概率的计算P9(二级重点)选择、填空、计算记住古典概型事件概率的计算公式3.利用概率的性质计算概率P11-12(一级重点)选择、填空,(考得多)等,要能灵活运用。4.条件概率的定义P14(一级重点)选择、填空记住条件概率的定义和公式:5.全概率公式与贝叶斯公式P15-16(二级
3、重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。6.事件的独立性(概念与性质)P18-20(一级重点)选择、填空定义:若,则称A与B相互独立。结论:若A与B相互独立,则A与,与B与都相互独立。7.n重贝努利试验中事件A恰好发生k次的概率公式P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布8.离散型随机变量的分布律及
4、相关的概率计算P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。9.常见几种离散型分布函数及其分布律P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。10.随机变量的分布函数P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:;其中;。11.连续型随机变量及其概率密度P39(一级重点)选择、填空
5、重点记忆它的性质与相关的计算,如;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。;设为的连续点,则存在,且。12.均匀分布、指数分布P42(二级重点)选择、填空、计算题记住它们的概率密度,能够根据所给的密度函数识别它们。13.正态分布和一般正态分布的标准化P44-P46(一级重点)选择、填空记住性质和公式:标准正态分布函数的性质:;概率的计算(重点):。14.随机变量函数的概率分布P50-P54(三级重点)选择、填空在连续型随机变量函数的概率分布中,要记住用直接变换法求“非单调性”随机变量函数的概率密度的方法。第三章多维随机变量及其概率分布15.二维离散型随机变量联合分布律和
6、边缘分布律P62-P64(一级重点)选择、填空、计算题对于联合分布律,记住所有概率和为1.求概率时,找到满足条件的随机点,再把对应的概率相加即可。要记住边缘分布律的求法。通过分布律会判断X,Y是否相互独立。16.二维连续型随机变量的概率密度和边缘概率密度P66-P69(一级重点)选择、填空、计算、综合;已知概率密度会求在平面区域内取值的概率,记住公式:练掌握连续型随机变量的边缘概率密度函数的求法,并能判断X,Y是否相互独立(考查的重点)。17.二维随机变量的独立性P73(一级重点)选择、填空、计算题考生要记住二维离散型的随机变量和二维连续型的随机变量独立性的判断。其一:与有二;其二:设为二维连
7、续型随机变量,其概率密度为,关于与的边缘概率密度分别为和,则与相互独立的充要条件为:=。其三:一个结论若二维随机变量服从二维正态分布,与相互独立的充要条件是。18.二维均匀分布、二维正态分布P68-P71(三级重点)计算题、综合题记住这两种分布的概率密度函数,还有以下结论若二维随机变量服从二维正态分布,则随机变量与分别服从正态分布。19 .两个随机变量函数的分布P80-P91(三级重点)填空题记住结论并能灵活运用设相互独立,且,得。推广:个独立正态随机变量的线性组合仍服从正态分布,即。第四章随机变量的数字特征20 .随机变量数学期望的概念、性质与计算P86-P94(一级重点)选择、填空、计算题
8、首先要十分熟练的掌握数学期望的概念与性质,数学期望的性质在选择填空题中经常考到,然后要熟悉离散型和连续型随机变量及随机变量函数的数学期望的计算公式。考生一定要结合历年考试真题认真练习,做到心中有数。21.随机变量的方差的概念、性质及计算P96-P103(一级重点)选择、填空、计算熟悉方差的性质和计算公式,一般用“内方减外方”来计算方差,即。在方差的性质中,要注意:常数的方差为零,所以D(X+C)=D(X);当X,Y相互独立时,才,此时特别的。22.常见分布的数字特征P104(一级重点)选择、填空、计算题提醒各位考生,书上104页的那张表所包含的内容经常考到,是考试需要重点记忆的表格之一。不仅要
9、记清各种分布的数学期望与方差,还要记清各自的概率分布与密度函数。表格熟记在心,能够灵活运用期望与方差的性质,基本上就能轻松拿下10-20分。23.协方差和相关系数P105-P107(一级重点)选择、填空、计算题要熟悉协方差的性质与计算公式性质:;,其中为任意常数;若,则;o计算:,。另外,要掌握相关系数的计算公式,还要知道相关系数的含义:两个随机变量的相关系数是两个随机变量间线性联系密切程度的度量,越接近1,与之间的线性关系越密切。当时,与存在完全的线性关系,即;时,之间无线性关系,此时称X,Y不相关。随机变量与不相关的充分必要条件是。注意:若随即变量与相互独立,则,因此与不相关,反之,随机变
10、量与不相关,但与不一定相互独立。若二维随机变量服从二维正态分布,与,从而与不相关的充要条件是与相互独立,因此与不相关和与相互独立都等价于。以上两点在选择题中经常出现。第五章大数定律及中心极限定理24.切比雪夫不等式P116(二级重点)选择、填空记住切比雪夫不等式的两种形式。它是用来估算概率的。25.大数定律P116-P119(二级重点)选择、填空考生要记住相应的公式和含义。26.独立同分布序列的中心极限定理P120(二级重点)选择、填空牢记:是独立同分布随机变量序列,渐进服从正态分布。当。分大时,独立同分布的随机变量的平均值的分布近似于正态分布27.棣莫弗-拉普拉斯中心极限定理P122(三级重
11、点)填空题主要结论:在贝努利试验中,若事件发生的概率为,又设为次独立重复试验中事件发生的频数,则当充分大时,近似服从正态分布。第六章统计量与抽样分布28.样本均值、样本方差P133-P134(一级重点)选择、填空要清楚样本均值、样本方差、样本标准差的计算公式。另外,要牢记结论设总体的样本,为样本均值:若总体分布为,则的精确分布为;若总体分布未知(或不是正态分布),且,则当样本容量较大时,的渐近分布为,这里的渐近分布是指较大时的近似分布。29.三大抽样分布P137-P141(一级重点)选择、填空记住三大分布的定义,熟悉它们的结构,无需记忆概率密度函数。牢记重要结论:;等。偏重考查卡方分布的定义式
12、。第七章参数估计30.单个正态总体均值和方差的置信区间P156-P162(一级重点)填空、应用题书上162页的表的前3行内容常考,记住各种情况下的置信区间。做题时,只要将已知条件往相应的置信区间中代入求值即可。31.参数的矩法估计P145(二级重点)填空题、计算题用样本均值去估计总体的均值,则从解出的即为,称为的矩法估计量。用样本二阶中心矩估计总体方差,即。(用的少)。32.参数的极大似然估计P147(二级重点)填空、计算考生要记住极大似然估计的方法与步骤:写出似然函数并化简两边取对数;令,求出的值即为的极大似然估计33.估计量的无偏性P153(一级重点)选择题设是的一个估计,若,则称为的无偏
13、估计,否则称为有偏估计。是的无偏估计,但不是的无偏估计。本知识点经常和数学期望的性质联合来考查。34.估计量的有效性和相合性P152-P153(一级重点)选择、填空(或)相合性:若是得一个估计量,若,则称是的相合估计。有效性:设,若,是的两个无偏估计,则称比有效。其中有效性经常考。第八章假设检验35.假设检验的两类错误P169(一级重点)填空熟记概念:一类错误是:在成立的情况下,样本值落入了拒绝域中,因而被拒绝,称这种错误为第一类错误,又称为拒真错误。一般记犯第一次错误的概率为,也叫置信水平。另一类错误是:在不成立的情况下,样本值未落入,因而被接受,称这种错误为第二类错误,又称为取伪错误。记犯
14、第二类错误的概率为。由此可知:,。两类错误的概率是关联的,当样本容量固定时,一类错误的概率的减少将导致另一类错误的概率的增加;要同时降低两类错误的概率,需要增大样本容量。36.单个正态总体的均值和方差的假设检验P170-P181(一级重点)选择、填空、应用题要牢记教材181页表中u检验和t检验的前三行,以及分布对应的内容。这是教材中的第三个重要表格。做题时要熟记解题步骤,记住相应的统计量和拒绝域,那么剩下的就是计算了。双边检验考查的较多。第九章回归分析37.用最小二乘法估计回归模型中的未知参数P187(一级重点)填空、计算题整个第九章线性回归,仅考这一个考点,记住以下几点其一:回归直线是描述与
15、之间关系的经验公式,称为回归常数,称为何归系数。其二:求,的估计,时,自然直观的想法是对一切观测值与回归直线的偏离达到最小,故使得其三:回归直线的确定引进记号达到最小的,即为,。则,。其四:散点的几何重心在回归直线上第一部分三角函数表三角函数表反三角函数表第二部分极限极限数列极限:刘徽的“割圆术”,设有一个半径为1的圆,在只知道直边形的面积计算方法之下,要计算其面积:方法:先做圆的内接正六边形,其面积记为,再做一内接正12边形,记其面积为再做一内接正24边形,记其面积为,如此逐次将变数加倍。得到数列,则当n无穷大时,有函数极限:常用的极限公式常用的几个公式等比数列公式是等比数列当q<1时
16、,等比数列的无穷项级数和为等差数列公式:或者:例设二维随机变量的分布函数为,求:(1)常数a,b,(2)的概率密度.解:(1)由分布函数的性质知从上面第二式得,从上面第三式得,再从上面第一式得从而概率密度为第三部分导数导数含义函数值的增长与自变量增长之比的极限。重要的求导公式若函数,都在点处可导,则有(i);导数的四则运算(ii);(iii),.例题:解:(1)(2)(3)(4)在概率中的应用主要是知道分布函数求密度函数,需要对分布函数求导数。.3复合函数的求导链式法则两个可导函数复合而成的复合函数的导数等于函数对中间变量的导数乘以中间变量对自变量的导数.在利用复合函数的求导法则解决求导问题时
17、,应该注意以下几点:(1)准确地把一个函数分解成几个比较简单的函数;(2)复合函数求导后,必须把引进的中间变量换成原来的自变量.利用复合函数的求导法则求导的步骤如下:(1)从外到里分层次,即把复合函数分成几个简单的函数;(2)从左到右求导数,即把每一个简单函数对自身的自变量的导数求出来;(3)利用链式求导法则,从左到右作连乘.例题:解函数可分解为则由复合函数求导法则有主要在第二章第四节里面用第四部分原函数和不定积分原函数:已知有是一个定义在区间内的函数,如果存在着函数,使得对内任何一点或那么函数就称为例如:在区间内的原函数。是在区间上的原函数。不定积分内,函数的带有任意常数项的原函数称为在区间
18、内的不定积分,记作,即。称为积分号,称为被积函数,称为被积表达式,称为积分变量。基本积分公式由基本微分公式可得基本积分公式1(为常数),02(),03,04,5,6,7,08,090,111012,13.这些基本公式是求不定积分的基础,应熟记.求不定积分的方法一.第一类换元法先看下例:回忆:令,定理1(第一类换元法):这种方法称为凑微分法.(将公式中的箭头作出动态效果)例1求下列不定积分1、解1,2令令=2、由上面的解题可发现,变量只是一个中间变量,在求不定积分的过程中,只是都要换回到原来的积分变量。因此,在较熟练之后,可以采用不直接写出中间变量的做法。例如:通过以上例题,可以归纳出如下一般凑
19、微分形式:;等等.第二类换元法2、分部积分法利用复合函数微分法则导出了换元积分法,它能解决许多积分问题,但仍有许多类型的积分用换元法也不能计算,例如、等等本节我们用乘积的微分公式导出另一种重要的积分方法一一分部积分法,可以解决许多积分问题.设、是两个可微函数,由得两边积分,可得即分部积分公式二、特殊情况1、用分部积分法计算.不过有时需要多次使用分部积分法.例6求.解式:.式易于计算.小结:1.对可微函数、,有分部积分公当容易求出,且比易于积分时.利用分部积分公.要记住适合使用分部积分法的常见题型及凑微分d的方式.如果被积函数是两类基本初等函数的乘积,使用分部积分法时进入微分号的顺序一般为:指数
20、函数,三角函数,窑函数,反三角函数,对数函数。性质1的情形.性质2数).第五部分定积分的基本性质定积分性质.这个性质可推广到有限多个函数(为常有分区间具有可加性.莱布尼茨(Leibniz)牛顿-莱布尼茨公式这性质表明定积分对于积定理2(牛顿(Newton)公式)如果函数是连续函数在区间的一个原函数,则法定积分的计算.定积分的分部积分设函数与均在区间上有连续的导数,由微分法则,可得式两边同时在区间上积分,有例5设在上连续,证明:(1)小结:1定积分的分部积分公式,若为奇函数,则(2)若为偶函数,.定积分换元积分定理:注意:换元必薪限,下限对下限,上限对上限分分部积分法:设函数与均在区间上有连续的
21、导数,则有2(1).定积若为奇函数,则(2)若分:设在上连续,则有积分1.设在积分区间上连续,.对称区间上的积广义则有求的分布函数当时,变上限的积分例一解当时,,如果在区间上连续,设随机变量的概率密度为当时即的分布函数为性质3不论三点的相互位置如何,恒例二设连续型随机变量的分布函数为求(1)的概率密度;(2)落在区间的概率两种解法:例三设某种型号电子元件的寿命(以小时计)现有一大批此种元件(设各元件工作相互独立)解(1)或者,具有以下的概率密度寿命大于1500小时的概率是多少?(2),问(1)任取1只,其任取4只,4只元件中恰有2只元件的寿命大于1500的概率是多少?(3)任取4只,4只元件中
22、至少有1只元件的寿命大于1500的概率是多少?解(1).(2)各元件工作相互独立,可看作4重贝努利试验,观察各元件的寿命是否大于1500小时.令表示4个元件中寿命大于1500小时的元件个数,则,所求概率为(3)所求概率为第六部分偏导数求法1.偏导数的定义设函数z=f(x,y)在点P(x,y)的某邻域有定义,函数z在点P(x,y)处对变量x导数和对变量y的偏导数分别定义为=更多元的函数可以类似地定义偏导数.2.偏导数的计算对一个自变量求偏导数时,只要把其它的自变量都当常数就行了.因此,一元函数的求导公式与导数运算法则都可用于求多元函数的偏导数.3.高阶偏导数对函数z=f(x,y)的偏导数再求偏导
23、数就得到高阶偏导数,例如=;=;=;=.其中、称为混合偏导数.类似地可以定义更高阶的偏导数.注意:1、更多元的函数可以类似地定义偏导数.2、计算法:对一个自变量求偏导时,只要把其他自变量都当常数就行时,把看作常量,而对求导数;时,把看作常量,而对求导数。例1求在点处的偏导数。,解法1:则解法2:,则主要用于第三章的二维随机变量的分布函数的求导例一设(X,Y)的概率密度为求:关于X及关于Y的边缘概率密度,并判断X与Y是否相互独立.解:关于X的边缘概率密度当时,.当或时,所以同理当时,,所以X与Y不独立第七部分二重积分的性质由于二重积分的定义与定积分的定义是类似的,因而二重积分有与定积分类似的性质
24、,叙述于下(假定所出现的二重积分均存在):性质1被积函数的常系数因子可以提到积分号外,即(k为常数).特别,令f(x,y)三1,则有.(D性质2函数和(差)的二重积分等于各函数二重积分的和(差),即性质3如果区域D可以划分为D1与D2,其中D1与D2除边界外无公共点,则=+.设XVY是两个相互独立的随机变量,X在0,1服从均匀分布,Y的概率密度为(2);(3)例2设的概率密度为知当时,例4设(X,Y)服从在成,求D(X二、二重积分的计算求:(1)(X,Y)的概率密度;解:(1)由已知XVY相互独立,(X,Y)求的分布函数.解:由定义5当x>0,y>0时例3设X的概率密度为求解:D上
25、的均匀分布,其中D为x轴,y轴及x+y=1所围D(X)=解:按照二重积分的定义计算二重积分,只对少数特别简单的被积函数和积分区域是可行的,对一般的函数和区域,这种“和式的极限”是无法直接计算的.下面我们介绍将二重积分转化为两次定积分来计算的方法,这是计算二重积分的一种行之有效的方法.1.X一型区域上二重积分的计算设D是平面有界闭区域,若穿过D的内部且平行于y轴的直线与D的边界相交不多于两点(如图示3),则称D为X一型区域.由图可知,此时区域D可以用不等式表示为D:.图在区间a,b上任取一点x,过点x作与x轴垂直的直线,它与D相交于两点,axb.因此经过以上两步计算,相当于在区域上累加了一遍。(
26、1)由此可见,二重积分可以化为两次定积分来计算.第一次对变量y积分,将x当作常数,积分区间是区域D的下边界的点到对应的上边界的点.第二次对x积分,它的积分限是常数.这种先对一个变量积分,再对另一个变量积分的方法,称为累次(或二次)积分法.公式(1)是先对y后对x的累次积分公式,通常简记为2.A型区域上二重积分的计算设D是平面有界闭区域,若穿过D的内部且平行于x轴的直线与D的边界相交不多于两点(如图示4),则称D为Y一型区域.由图可知,此时区域D可以用不等式表示为D:图4利用与前面相同的方法,可得先对x后对y的累次积分公式:通常简记为(2).(3)3.一般区域上二重积分的计算如果区域D不属于上述两种类型,则二重积分不能直接利用公式(1)、(3)来计算.这时可以考虑将区域D划分成若干个小区域,使每个小区域或是X型区域、或是Y一型区域.在每个小区域上单独算出相应的二重积分,然后利用二重积分对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创意产业园区品牌塑造策略与产业集聚区域竞争力分析报告
- 健康领域过桥教学方案设计
- 思修实践活动策划与实施
- 线上口腔健康宣教活动策划与实施
- 神经内科危重护理
- 运营流程管理
- 商业教育的现代营销策略研究与实践
- 团队协作能力基于教育心理学的培养方法
- 如何高效提升个人能力
- 肾上腺肿块与神经源肿瘤诊疗解析
- 安全培训-重大事故隐患判定标准-专家版
- 2024年计算机二级WPS考试题库380题(含答案)
- 人教版小学英语单词表(完整版)
- 上海永大日立电梯按键的使用方法
- 注射用卡络磺钠销售培训学习资料
- WB/T 1069-2017乘用车运输服务通用规范
- MT 314-1992煤矿假顶用菱形金属网
- GB/T 28708-2012管道工程用无缝及焊接钢管尺寸选用规定
- 医师执业注册变更聘用证明
- 七升八数学知识点讲义(八年级初二数学暑假衔接班)
- 测量工具使用精品课件
评论
0/150
提交评论