




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习必备欢迎下载第四章因式分解第一节因式分解(1)计算下列各式:(m+4)(m-4)=;(y-3)2=;3x(x-1)=;m(a+b+c)=;a(a+1)(a-1)=.(2)根据上面的算式填空:3x2-3x=()();希-16=()();ma+mb+mc=()();y2-6y+9=()2a3-a=()()在(1)中我们知道从左边推右边是整式乘法;那么在(2)中由多项式推由整式乘积的形式是因式分解。因式分解与整式乘法的相互关系一一互逆关系。一、因式分解的定义:把一个多项式化成的形式,这种变形叫做把这个多项式o也可以叫做分解因式。定义解析:(1)等式左边必须是(2)分解因式的结果必须是以的形式表示
2、;(3)分解因式必须分解到每个因式都有不能分解为止。二、合作探究探究一:下列从左到右的变形中,哪些是分解因式?哪些不学习必备欢迎下载是分解因式?为什么?(1)x2-2-=x+-xX-Ix.xx(3)4x2-8x-1=4x(x-2)-1(5)a2-4abb2=(a-2b)2解:(2)2ab4ac2=a2b4c2(4)2ax-2ay=2a(x-y)(6)(x3)(x-3)=x2-9(7)下列从左边到右边的变形,是因式分解的是A、(3-x)(3+x)=9-x2B33,、,22、m-n=(m-n)(mmnn)C、(y+1)(y-3)=-(3-y)(y+1)D、4yz2y2z+z=2y(2zyz)+z探
3、究二:连一连:9x24y24a2-8ab+4b23a26a4a3+2a2+aa(a+1)2(a-b)2(3x+2y)(3x2y)三、提升训练1.下列各式从左到右的变形是分解因式的是()A.a(ab)=a2ab;B.a2a+1=a(a2)+1Cx2x=x(x1);D.x2-=(x+-)(x-)yyyy2.连一连:a2-12a+6a+92a4a+4(a+1)(a-1)(3a+1)(3a-1)a(a-b)学习必备欢迎下载9a2-1(a+3)2a2ab(a2)2第四章因式分解第二节提公因式法(一)一、学习重难点重点:能观察由多项式的公因式,并根据分配律把公因式提由来.难点:让学生识别多项式的公因式.1
4、、一个多项式中各项都含有的因式,叫做这个多项式各项的.2、公因式是各项系数的与各项都含有的字母的的积多项式ma+mb+m都含有的相同因式是,多项式3x26xy+x都含有的相同因式是。3、如果一个多项式的各项含有公因式,那么就可以把这个提由来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做4.提公因式法分解因式与单项式乘以多项式有什么关系?二、合作探究探究一:找由下列多项式的公因式:(1)3x+6(2)7x221x学习必备欢迎下载(3) 8a3b2-12ab3c+abc32(4) 24x12x+28x.探究二:分解因式:(1)3x+6;(2)7x221x;(3)8a3b212ab3c
5、+abc(4)-24x3-12x2+28x.互相交流,总结由我公因式的一般步骤:首先:其次:探究三:用提公因式法分解因式:(1) 8a3b212ab3c+6a3b2c(2) 8a(x-a)4b(a-x)-6c(x-a)(3) -x5y3x3y5(4) 8a3b2-12ab3c6a3b2c学习必备欢迎下载第四章因式分解第二节提公因式法(二)学习重难点重点:能观察由公因式是多项式的情况,并能合理地进行分解因式.难点:准确我由公因式,并能正确进行分解因式.一、教材精读:1、一个多项式中各项都含有的因式,叫做这个多项式各项的.(1) -2x2y+4xy2-2xy的公因式:(2) a(x-3)+2b(x
6、-3)的公因式:2、如果一个多项式的各项含有公因式,那么就可以把这个提由来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做二、练习提升探究一:把下列各式分解因式:(1)x(a+b)+y(a+b)(2)3a(x-y)(xy)探究二:1 .在下列各式等号右边的括号前插入“+”或”号,使等式成立:(1) 2-a=(a-2)(2)y-x=(xy)学习必备欢迎下载(3)b+a=(a+b)(5)-m-n=(m+n2.把下列各式分解因式:(1)a(x-y)+b(y-x)(4)(ba),22(6)-s+t=(ab)(s2-t2)(2)2(y-x)2+3(x-y),一、一,、2一,、(3)6(p+q
7、)-12(q+p)(4) a(m-2)+b(2-m(5)33(m-n)6(nm(6)mn(m-n)-m(nm探究三、能力提升1 .分解因式:x(a-b)2n+y(b-a)2n+1=学习必备欢迎下载第四章因式分解第三节运用公式法(一)【学习目标】(1) 了解运用公式法分解因式的意义;(2)会用平方差公式进行因式分解;(3)了解提公因式法是分解因式,首先考虑方法,再考虑用平方差公式分解因式.(4)在引导学生逆用乘法公式的过程中,发展学生的观察能力培养学生逆向思维的意识,同时让学生了解换元的思想方法.【学习方法】.自主探究与小组合作交流相结合.【学习重难点】重点:让学生掌握运用平方差公式分解因式.难
8、点:将某些单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力.【学习过程】模块一预习反馈一.学习准备:1 .请同学们阅读教材的内容,并完成书后习题2 .预习过程中请注意:不懂的地方要用红笔标记符号;完成你力所能及的随堂练习和习题;二.教材精读:1、平方差公式:a2-b2=填空:(1) (x+3)(x-3)=(2)(4x+y)(4x-y)=(3)(1+2x)(1-2x)=;(4)(3n+2n)(3m-2n)=.2、把(a+b)(ab)=a2b2反过来就是a2-b2=与这两个数的a2b2=中左边是两个数的,右边是这两个数的的。根据上面式子填空:2.2(1)9m-4n=;(3)
9、x2-9=模块二合作探究探究一:把下列各式因式分解:(1) x2-16(2) 16x2-y2=,、.2(4)1-4x=.,、225-16x22(4)9m4n,一、_212(3) 9a-b4探究二:将下列各式因式分解:(2)2x3-8x(1)9(x-y)2-(x+y)2(3) 3x3y-12xy(4)a4-81学习必备欢迎下载模块三形成提升1、判断正误:(1) x2+y2=(x+y)(x-y)(),一、22,、(2) -x+y=-(x+y)(x-y)()(3) x2-y2=(x+y)(x-y)()(4)-x2-y2=-(x+y)(x-y)()2、下列各式中不能用平方差公式分解的是()A.-a2+
10、b2B.-x2-y2C.49x2y2-z2D.16m4-25n23、分解因式3x2-3x4的结果是()A.3(x+y2)(x-y2)B.3(x+y2)(x+y)(x-y)C.3(x-y2)2D.3(x-y)4、把下列各式因式分解:,一、222(1) 4-m(2)9m-4n2(x+y)2(3)a2b2m(4)(m-a)2(n+b)2(6)16x4+81y45、分解多项式:(1)16x2y2z2-9;(2)a2b2m2(4) (m-a)(n+b)模块四小结反思1 .这一节课我们一起学习了哪些知识和思想方法?2 .本课典型:平方差公式分解因式。3 .我的困惑:请写出来:课外拓展思维训练:1 .下列多
11、项式中能用平方差公式分解因式的是()e2,、2.2222cA、a+(b)b、5m-20mnC-x-yd、一x+92 .分解因式:22231. (a1)14a2.x-x学习必备欢迎下载第四章因式分解第三节运用公式法(二)【学习目标】(1)会用完全平方公式进行因式分解;(2)清楚地知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式或完全平方公式进行分解因式.(3)通过观察,推导分解因式与整式乘法的关系,感受事物间的因果联系.【学习方法】.自主探究与小组合作交流相结合.【学习重难点】重点:会用完全平方公式进行因式分解难点:对完全平方公式的运用能力.【学习过程】模块一预习反馈一.学习准备:1
12、.请同学们阅读教材57页58页的内容,并完成书后习题2.预习过程中请注意:不懂的地方要用红笔标记符号;完成你力所能及的随堂练习和习题;二.教材精读:1、分解因式学了哪些方法?2、填空:(1)(a+b)(a-b)=(2)(a+b)2=;(3)(a-b)2=根据上面式子填空:(1)a2-b2=;(2)a2-2ab+b2=;(3)a2+2ab+b2=;结论:形如与的式十称为元全平方式由分解因式与整式乘法关系可以看出:如果,那么,这种分解因式的方法叫运用公式法。模块二合作探究探究一:观察下列哪些式子是完全平方式?如果是,请将它们进行因式分解.(1) x2-4y2(2) x2+4xy-4y2(3) 4n
13、2-6mn+9n2(4) m2+9n2+6mn(5) x2-x+14(6) x6-10x525探究二:把下列各式因式分解:学习必备欢迎下载(1)a2b+b32ab2(3):1,-:,i:1(5) (6) (n2-2m)2-2(m2-2m)+1模块三形成提升1 .下列多项式能用完全平方公式分解因式的是()A.m2mn+r2B.(a+b)24abC2 .若a+b=4,贝Ua2+2ab+b2的值是()A.8B.16C3 .如果361十上是一个完全平方式,那么4 .下列各式不是完全平方式的是()A.x2+4x+1B.x22xy+y2C5 .把下列各式因式分解:(1) x2-4x+4(2)9a2+6ab
14、+b2(3).x2-2x+1D.x2+2x14.2D,4k的值是;.x2y2+2xy+1D.nimn+1n242 2122m-m+-(4)3ax+6axy+3ay3 9(5)-x2-4y2+4xy2(m+n)+8(m+n)+16模块四小结反思一.这一节课我们一起学习了哪些知识和思想方法?2 .本课典型:完全平方公式进行因式分解。3 .我的困惑:请写出来:课外拓展思维训练:1.若x2+2(m-3)x+16是完全平方式,则m=2.若a2+2a+b2-6b+10=0,贝Ua=,b=.试说明:无论x、y为何值,4x212x+9y2+30y+35的值恒为正。第四章因式分解学习必备欢迎下载第四节十字相乘法
15、【学习目标】1、会用十字相乘法进行二次三项式的因式分解;2、通过自己的不断尝试,培养耐心和信心,同时在尝试中提高观察能力。【学习重难点】重点:能熟练应用十字相乘法进行的二次三项的因式解。难点:准确地找出二次三项式中的常数项分解的两个因数与多项式中的一次项的系数存在的关系,并能区分他们之间的符号关系。【学习方法】自主探究与小组合作交流相结合.模块一预习反馈一.学习准备:(一)、解答下列两题,观察各式的特点并回答它们存在的关系1. (1)(x+2)(x+3)=(2)(x-2)(x-3)=(3) (x-2)(x+3)=(4)(x+2)(x-3)=(5) (x+a)(x+b)=x2+()x+2. (1
16、)x2+5x+6=()()x2-5x+6=()()(3) x2+x6=()()(4)x2x6=()()(二)十字相乘法步骤:(1)列出常数项分解成两个因数的积的各种可能情况;(2)尝试其中的哪两个因数的和恰好等于一次项系数;(3)将原多项式分解成(x+P)(x+q)的形式。关键:乘积等于常数项的两个因数,它们的和是一次项系数二次项、常数项分解竖直写,符号决定常数式,交叉相乘验中项,横向写出两因式例如:x2+7x+12=(x+3)(x+4)模块二合作探究探究一:1.在横线上填+,符号x2+4x+3=(x(x1)(2)x2-2x-3=(x_3)(x1)j_(3) y29y+20=(y4)(y5)j
17、_(4)t2+10t56=(t4)(t14Jm2+5m+4=(m_4)(mQ(6)y22y15=(y_3)(y5)_归纳总结:用十字相乘法把二次项系数是“1”的二次三项式分解因式时,(u不核项是正数时,常数项分解的两个因数的符号是(),且这两个因数的符号与一次项的系数的符号()。(2) .当常数项是负数时,常数项分解的两个因数的符号是(),其中()的因数符号与一次项系数的符号相同。(3)对于常数项分解的两个因数,还要看看它们的()是否等于一次项的()。探究二:用十字相乘法分解因式23xy+2y2(1) a2+7a+10(2)y27y+12(3) x2+x20探究三:因式分解:(1)2x2-7x
18、+3(2)2x2+5xy+3y2学习必备欢迎下载模块三形成提升1 .因式分解成(x-1)(x+2)的多项式是()A.x2-x-2B.x2+x+2C.X2+x-2D.x2x+22 .若多项式x27x+6=(x+a)(x+b)贝Ua=,b=。3 .(1)x2+4x+=(x+3)(x+1);(2)x2+x-3=(x-3)(x+1);4 .因式分解:m2+7m-18(2)x2-9x+18(3)3y2+7y-6(4)x2-7x+10(5)x2+2x-15(6)12x213x+3(7)18x221xy+5y2模块四小结反思一.这一节课我们一起学习了哪些知识和思想方法?二.本课典型:十字相乘法进行二次三项式的因式分解。三.我的困惑:请写出来:课外拓展思维训练:1 .若(x2+y2)(x2+y2-1)=12,贝Ux2+y2=.2 .已知:ab*0,a2+ab-2b2=0,那么2a_b的值为2ab3 .若(x3)(x+5)是x2+px+q的因式,则p为()A、一15B、一2C、8D、24 .多项式x3十x2,x2+2x+1,x2x2的公因式是.第四章因式分解回顾与思考学习必备欢迎下载【学习目标】1 .复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式.2 .通过因式分解综合练习,提高观察、分析能力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 渗透市场意识的2024年国际商业美术设计师考试试题及答案
- 六上生命教育试题及答案
- 2024年纺织设计行业新趋势试题及答案
- 助理广告师考试重点内容概述试题及答案
- 分析纺织品市场趋势对检验的影响因素试题及答案
- 2024年纺织对接新技术试题及答案
- 智能家居知识试题及答案
- 极致提升广告设计师能力试题及答案
- 2024年纺织品检验员证书考试深度分析试题及答案
- 意外伤害试题及答案库
- 1-江苏省冶金等工贸企业安全生产标准化运行质量审计评分表-
- 弘扬航天精神拥抱星辰大海!课件高一上学期载人航天主题班会
- 《excel数据分析》课件
- DB1310-T 223-2020 小麦节水绿色丰产栽培技术规程
- 小学六年级科学(人教版)《各种各样的自然资源》-教学设计、课后练习、学习任务单
- 215kWh工商业液冷储能电池一体柜用户手册
- 燃气安全事故处理及应急
- 汽车发动机构造与维修课件 第六章 燃油供给系
- 可再生能源预测技术研究
- 2024-2030年中国耐火材料行业供需分析及发展前景研究报告
- 部门级安全培训考试题附答案【考试直接用】
评论
0/150
提交评论