版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Efficient Image-Based Methods for Rendering Soft Shadows alan.heirich,laurent.mollcompaq Maneesh AgrawalaRavi RamamoorthiAlan Heirich Laurent MollPixar Animation StudiosStanford UniversityCompaq Computer CorporationCompaq Computer CorporationHard vs. Soft ShadowsHard ShadowsSoft ShadowsShadow mapsIm
2、age-based hard shadows Williams 78Time, memory depend on image size, not geometric scene complexityDisadvantage: bias and aliasing artifactsSoft shadows Chen and Williams 93View interpolate multiple shadow mapsIBR good for soft shadowsIBR good for secondary effectsArtifacts less perceptibleIBR works
3、 well for nearby viewpointsShadow maps from light source Light source localized areaPoorly sampled regions are also dimly litIBR good for soft shadowsPoorly sampled regions are also dimly litAttenuation onlyWith lightingLightShadow mapContributionsExtend shadow maps to soft shadowsImage-based render
4、ing especially suitableTwo novel image-based algorithms:Layered attenuation maps (LAM) Coherence-based raytracing (CBRT) LAMDisplay: 5-10 fpsSome aliasing artifactsInteractive applicationsGamesPreviewing CBRTRender: 19.83 minSpeedup: 12.96xProduction quality imagesRefresher: LDIsLayered depth images
5、 Shade et al. 98GeometryCameraRefresher: LDIsLayered depth images Shade et al. 98LDIRefresher: LDIsLayered depth images Shade et al. 98LDI(Depth, Color)PrecomputationRender views from points on light (hardware)Create layered attenuation map (software)Warp views into LDI Store (depth, attenuation)Obj
6、ects in LAM visible in at least 1 viewPrecomputation1st viewpointPrecomputation2nd viewpointAttenuation = 1/2Attenuation = 2/2PrecomputationWarped 2nd viewpoint Attenuation = 1/2Attenuation = 2/2Not present DisplayRender scene without shadows (hardware)Project into LAM (software)Read off attenuation
7、 Attenuation modulates shadowless renderingDisplay LAM (center of light)EyeDisplay LAM (center of light)EyeAttenuation = 2/2Color = Color * 2/2Display LAM (center of light)EyeDisplay LAM (center of light)EyeNot in LAMAttenuation = 0Color = Color * 0Previous Interactive MethodsHW per-object textures
8、Herf and Heckbert 97Convolution Soler and Sillion 98Texture intensiveLAM size: 512 x 512Avg num depth layers: 1.5Precomp: 7.7 sec (64 views) 29.4 sec (256 views)Display: 5-10 fpsLAM size: 512 x 512Avg num depth layers: 2Precomp: 6.0 sec (64 views) 22.4 sec (256 views)Display: 5-10 fpsLAM VideoLayere
9、d attenuation maps fast, aliasesCoherence-based raytracing slow, noiseLAMCBRTCoherence-based raytracingHierarchical raytracing through depth imagesTime, memory decoupled from geometric scene complexityCoherence-based samplingLight source visibility changes slowlyReduce number shadow rays tracedAlso
10、usable with geometric raytracerRepresent scene with multiple shadow mapsLightImage-based raytracing1st shadow mapRepresent scene with multiple shadow mapsLightImage-based raytracing2nd shadow map1st shadow mapTrace shadow ray through shadow mapsLightImage-based raytracing2nd shadow map1st shadow map
11、Hierarchical img based raytracingPreviousHeight fields:Musgrave et al. 89New views:Marcato 98 Chang 98Lischinski and Rappoport 98 Shadows:Keating and Max 99Our contributionsAccelerations shadow ray traversalFast methods handling multiple depth imagesSpeedup: 2.20 xLight source visibility imageLightV
12、isibility images1Light source visibility images1s2Vis image for s1LightVisibility imageCoherence-based samplingCompute visibility image at first point s1Loop over following surface points siPredict visibility image at si from si-1Trace rays where prediction confidence lowPredicting visibilityBlocker
13、 ptss1s1s2PredictionPredicting visibilityBlocker ptss1s1s2Prediction Low confidence Light source edges Blocked/unblocked edgesPrediction confidencePredicted visibility Trace rays in all Xed cells High confidence:5 Low confidence:31 Total cells:36 Ratio:5/36 = 0.14 Low confidence Light source edges B
14、locked/unblocked edgesPrediction confidencePredicted visibility Trace rays in all Xed cells High confidence:56 Low confidence:88 Total cells:144 Ratio:56/144 = 0.40Propagating low confidence If traced ray = prediction trace neighbor cells Similar to Hart et al. 99 Prediction correctPropagating low c
15、onfidence If traced ray = prediction trace neighbor cellsPrediction incorrect Similar to Hart et al. 99 Light cells: 16 x 16 (256) Four 1024 x 1024 maps Precomp: 2.33 min Render:19.83 min Rays:79.86 Speedup:12.96x 2.27x due to image-based raytracing accelerations 5.71x due to coherence-based samplin
16、g Light cells: 16 x 16 (256) Four 1024 x 1024 maps Precomp: 3.93 min Render:65.13 min Rays:88.74 Speedup:8.52x 2.16x due to image-based raytracing accelerations 3.94x due to coherence-based samplingLAMCBRTConclusionsTwo efficient image-based methodsLayered attenuation maps Interactive applications C
17、oherence-based raytracingProduction quality imagesIBR ideal for soft shadows secondary effectsFuture workDynamic scenesAntialiasing with deep shadow mapsHardware implementationAcknowledgementsTom LokovicReid Gershbein, Tony Apodaca, Mark VandeWettering, Craig KolbStanford graphics groupPrediction er
18、rorsMissed blockersDependent on surface sampling densityMissed holesDependent on light source sampling densitys1s2missedblockereMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#o
19、XlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPaI7F3C0z)v&s#pXmUiRfOcK9H6E
20、2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQeNbK8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pY
21、mUjRfOcL9H6E3B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7
22、G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u$r
23、ZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0yrZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5
24、D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2A+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#o
25、XlUiMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQeNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUjRfOcK9H6E
26、2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZngPdLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#oXlUi
27、QfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y
28、(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXhPeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfN
29、cK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQeNbK8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeNbJ8G4D1A-w*t$UjRfOcL9H6E3B+y(u%r
30、#oWlTiQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbF4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年PM2.5传感器项目营销方案
- 2026年低代码 RPA流程自动化项目投资计划书
- 2026年低度白酒年轻化项目营销方案
- 2026青海黄南州州直部分单位“雏鹰计划”人员招聘1人备考题库附答案详解(预热题)
- 2026江西南昌红谷滩区临江第二幼儿园招聘带班教师2人备考题库含答案详解(黄金题型)
- 2026贵州铝业集团双元新材料有限责任公司招聘6人备考题库及答案详解(全优)
- 2026年公园城市项目可行性研究报告
- 2026福建厦门一中集美分校(灌口中学)非在编、顶岗教师招聘3人备考题库含答案详解(典型题)
- 2026年原子层沉积材料项目公司成立分析报告
- 2026年智能打印设备项目公司成立分析报告
- 2026 年离婚协议书 2026 版民政局专用模板
- 预备役介绍课件
- 施工计划方案的设计要点及注意事项
- 2026年烟台工程职业技术学院单招综合素质考试参考题库附答案详解
- 全球牙膏行业现状分析报告
- IT项目管理-项目管理计划
- GB/T 7714-2025信息与文献参考文献著录规则
- 2026元旦主题班会:马年猜猜乐新春祝福版 教学课件
- 《老年人误吸的预防专家共识》解读2
- 教学管理系统项目开发计划大全五
- 2025亚洲智能手机显现模块制造行业产能地理分布及供应链调整规划
评论
0/150
提交评论