下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、-. z.图像处理技术应用实践课程设计题 目 图像增强算法综合应用 学生 学 号 院 系 专 业 任课教师 *年*月*日图像增强算法综合应用梅雨信息工程大学计算机与软件学院, 210044摘要: 图像增强是指增强图像中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果。运用空间域与频率域相结合的算法,去除随机噪声和周期噪声的混合噪声,提高图像质量。关键词: 随机噪声;周期噪声;空间域和频率域去噪1 任务描述图像增强处理:设计一套空间域与频率域结合的图像增强算法,处理以下任一组图片中的带噪声图像,去除噪声,提高图像质量。1:噪声为随机噪声和周期噪声混合噪声;2要求:a去噪处理后,计
2、算均方误差评估去噪处理后图像的去噪效果b撰写完整的科技报告形式类似科技论文表述自己的算法设计,算法实现与算法评估过程。第一组图片:第二组图片:2 图像增强算法2.1问题分析图片中参加了随机噪声和周期噪声混合噪声。针对不同的噪声,不同的去噪方法效果不同,因此应该采用不同的去噪方法以到达最好的去噪效果。随机噪声应在空间域去除,而空域去噪方法中,中值滤波法效果最好。周期噪声应在频域中消去。去除噪声后的图像仍然可以改善处理。均方误差评估去噪处理后图像的去噪效果。2.2算法设计1读入初始图片及加噪图片。clc;clear;f=imread(D:dogOriginal.bmp);g=imread(D:do
3、gDistorted.bmp);2利用空域滤波,去除随机噪声,此时用中值滤波法,并显示它的频谱图。g3=medfilt2(g,3,3);图1 空域滤波后的图像与原图的比拟3利用频域滤波,去除周期噪声。先转化成double型,进展傅里叶变换,再转化成数据矩阵,最后利用低通滤波去除周期噪声。 F = double(g); % 数据类型转换,MATLAB不支持图像的无符号整型的计算 G = fft2(F); % 傅里叶变换 G= fftshift(G); % 转换数据矩阵 M,N=size(G); nn = 2; % 二阶巴特沃斯(Butterworth)低通滤波器 d0 = 27; m = fi*
4、(M/2); n = fi*(N/2); for i = 1 : M for j = 1 : N d = sqrt(i-m)2+(j-n)2); h = 1/(1+0.414*(d/d0)(2*nn); % 计算低通滤波器传递函数 result(i,j) = h * G(i,j); end end图2 去除混合噪声后的图像与原图的比拟4计算均方误差评估去噪效果。m n=size(p);l=f-p;he=sum(sum(l);avg=he/(m*n);k=l-avg;result1=(sum(sum(k.2)/(m*n);if result1=0 disp(dog图均方误差); result2=
5、0elsedisp(dog图均方误差);result2=sqrt(result1)end3 算法实现代码clc;clear;f=imread(D:dogOriginal.bmp);subplot(421);imshow(f),title(原图);f1=double(f); f2=fft2(f1); % 傅立叶变换f2=fftshift(f2);subplot(422);imshow(log(abs(f2),),title(原图频谱图);g=imread(D:dogDistorted.bmp);subplot(423);imshow(g),title(混合噪声图);g1=double(g); g
6、2=fft2(g1); % 傅立叶变换g2=fftshift(g2);subplot(424);imshow(log(abs(g2),),title(混合噪声频谱图);%空域滤波,去除随机噪声(中值)g3=medfilt2(g,3,3);subplot(425);imshow(g3),title(去除随机噪声);g4=double(g3);F1=fft2(g3);%对图像进展傅立叶变换F1=fftshift(F1);%移频figure,subplot(426),imshow(log(abs(F1),),title(去除随机噪声频谱图);%频域滤波 G= F1; M,N=size(G); nn
7、= 2; % 二阶巴特沃斯(Butterworth)低通滤波器 d0 = 27; m = fi*(M/2); n = fi*(N/2); for i = 1 : M for j = 1 : N d = sqrt(i-m)2+(j-n)2); h = 1/(1+0.414*(d/d0)(2*nn); % 计算低通滤波器传递函数 result(i,j) = h * G(i,j); end end result = ifftshift(result); g = ifft2(result); p= uint8(real(g); subplot(427);imshow(p,),title(去噪后的图);
8、 subplot(428);imshow(log(abs(result),),title(去噪后的频谱图); %计算均方误差m n=size(p);l=f-p;he=sum(sum(l);avg=he/(m*n);k=l-avg;result1=(sum(sum(k.2)/(m*n);if result1=0 disp(dog图均方误差); result2=0elsedisp(dog图均方误差);result2=sqrt(result1)end4 运行结果图3 分步去噪与原图的比拟图4 均方误差结果5 程序分析通过本次设计,我发现去噪后的图不如原图清晰,去噪效果不是很好,可以采用其他算法观察去噪效果
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 苏州教师考试试卷及答案
- 初三语文阅读真题及答案
- 2025年环保知识综合试题及答案
- 幼儿园食堂食品安全课件
- 2025年美术生动画考试题目及答案
- 基础设施安全风险
- 地毯跨境电商模式分析
- 丰城学校初中政治试卷及答案
- 2025年中专对口语文试卷及答案
- 时尚行业市场分析与趋势
- 四川省2025年高考综合改革适应性演练测试化学试题含答案
- 篮球原地投篮教学
- 医疗机构安全生产事故综合应急预案
- 水利信息化计算机监控系统单元工程质量验收评定表、检查记录
- 《管理学原理》课程期末考试复习题库(含答案)
- 电力系统经济学原理课后习题及答案
- DL-T+5174-2020燃气-蒸汽联合循环电厂设计规范
- 消费者在直播带货中冲动行为的影响因素探究
- 人工智能中的因果驱动智慧树知到期末考试答案章节答案2024年湘潭大学
- 数字化转型赋能高校课程思政的实施进路与评价创新
- 年产10吨青紫霉素发酵工厂设计毕业设计
评论
0/150
提交评论