




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、赵国庆中国人民大学出版社21世纪经济学系列教材普通高等教育“十五”、“十一五”国家级规划教材计量经济学(第四版)估计方法的扩展计量经济学 第六章 重点问题 两项选择模型:Probit模型和Logit模型 断尾回归模型与截取回归模型 固定效应模型和随机效应模型2022/7/25第六章 估计方法的扩展主要内容第一节 离散选择模型 第二节 受限因变量模型 第三节 面板数据2022/7/25第六章 估计方法的扩展第一节 离散选择模型 在实际经济问题的分析中,除可以利用连续变量表示居民消费或企业投资规模外,还会遇到一些表示研究对象的数量或状态的离散变量。如:可用0,1,2表示企业申请专利数,也可用0或1
2、说明企业是否申请专利事项。 在将离散变量理解成仅表示选择状态的基础上,可以进一步地利用离散变量讨论类似家庭是否购房或某人是否有工作等问题。 如果某个家庭是否购买住房或某人是否有工作的状态仅是作为用于说明某种具体经济问题的自变量,则应用以前介绍的虚拟变量的知识就足够了。2022/7/25第六章 估计方法的扩展第一节 离散选择模型 如果现在考虑某个家庭在一定的条件下是否购买住房或某人在一定的条件下是否有工作等问题,则表示状态的虚拟变量就不再是自变量,而是作为一个被说明对象的因变量出现在经济模型中。 因为在家庭是否购房或某人是否有工作等选择问题中,虚拟因变量的具体取值仅是为了区别不同的状态,所以将通
3、过虚拟因变量讨论备择对象选择的回归模型称为选择模型。2022/7/25第六章 估计方法的扩展第一节 离散选择模型 作为最简单的选择模型,可以考虑只具有两个备择对象的两项选择模型。 两项选择模型具有广泛的应用性,它不仅可以用于讨论家庭购房等问题,还可以用于讨论家庭购房是否申请银行贷款、家庭成员是否利用公共交通设施等两者择一的问题。 2022/7/25第六章 估计方法的扩展第一节 离散选择模型1.两项选择模型的推导 约定在具有备择对象的0和1两项选择模型中,下标t表示各不同的经济主体,取值0或1的因变量yt表示经济主体的具体选择结果,而影响经济主体进行选择的自变量xt为(1,x2t,x3t,xkt
4、),与自变量xt相关的回归模型参数为(1,2,3,k) 两项选择模型可以写成 yt=xt+ut (6-1)2022/7/25第六章 估计方法的扩展第一节 离散选择模型 为避免出现回归模型的因变量预测值偏离0或1的情形,需要限制因变量的取值范围并对回归模型式(6-1)进行必要的修正。 将讨论确定性取值为0或1的两项选择模型转换成讨论经济主体具体选择0或1的不同备择对象的概率两项选择模型: E(yt|xt)=1P(yt=1|xt)+0(1-P(yt=1|xt) =P(yt=1|xt)(6-2)2022/7/25第六章 估计方法的扩展第一节 离散选择模型 利用线性函数xt描述两项选择模型的条件期望值
5、E(yt|xt) ,得 P(yt=1|xt)=xt 一般地,将利用线性函数描述选择概率的式 (6-3) 称为线性概率模型 (Linear Probability Model)。 式(6-3)不能保证选择备择对象1的概率函数P(yt=1|xt)始终在0,1范围内取值的要求,就需要对式(6-3)进行必要的修正,在线性函数之外寻找满足概率函数取值要求的回归模型。作为对线性概率模型的修正, (6-3)2022/7/25第六章 估计方法的扩展第一节 离散选择模型 在两项选择模型中引入转换函数F(xt)而保证回归模型的因变量取值范围始终位于0,1区间。 P(yt=1|xt)=F(xt) P(yt=0|xt
6、)=1-F(xt) (6-4) 进一步的可将两项选择模型表示成非线性回归模型yt=F(xt)+ut (6-5)2022/7/25第六章 估计方法的扩展第一节 离散选择模型 Probit模型Logit模型标准正态分布函数(xt)作为转换函数F(xt)Logistic函数(xt)作为转换函数F(xt) 2022/7/25第六章 估计方法的扩展第一节 离散选择模型2.两项选择模型的参数估计(极大似然估计)2022/7/25第六章 估计方法的扩展第一节 离散选择模型2022/7/25第六章 估计方法的扩展第一节 离散选择模型3.两项选择模型对现实问题描述能力的衡量2022/7/25第六章 估计方法的扩
7、展第一节 离散选择模型 4.多元选择模型 可以考虑类似旅游地的选择、品牌选择或者职业选择等问题 。 (1)多元选择模型基本上还是需要通过最大似然法获得多元选择模型参数的一致统计估计量; (2)多元选择模型也可以使用不同的概率函数形式 ; (3)多元选择模型还涉及无关备择的独立性问题 。常用的多元选择模型基本上还主要是多元Logit模型。 2022/7/25第六章 估计方法的扩展第二节 受限因变量模型 在现实中,需要考虑从总体的一个受限部分抽取的样本推断总体特征的问题,就形成了受限因变量模型(Limited Dependent VariableModels)。 断尾回归模型(Truncated
8、Regression Model) 截取回归模型(Censored Regression Model) 只能得到分析对象在特定区间以内的因变量和自变量观察值的情形 能得到全部自变量和部分因变量观察值的情形 2022/7/25第六章 估计方法的扩展第二节 受限因变量模型1.断尾分布及其性质 断尾分布是指未断尾分布在大于某个特定断尾值以上的部分或小于某个特定断尾值以下的部分。 如果连续随机变量x的概率密度函数为f(x),则随机变量x大于断尾值a的条件密度函数就可表示成下式: 2022/7/25第六章 估计方法的扩展第二节 受限因变量模型(1)与正态分布相关的断尾分布及其性质2022/7/25第六章
9、 估计方法的扩展第二节 受限因变量模型 将在概率分布函数左边发生的断尾称为左断尾,而将出现在概率分布函数右边的断尾称为右断尾。 2022/7/25第六章 估计方法的扩展第二节 受限因变量模型(2)正态右断尾分布的断尾回归模型2022/7/25第六章 估计方法的扩展第二节 受限因变量模型2022/7/25第六章 估计方法的扩展第二节 受限因变量模型 3.截取分布及其性质2022/7/25第六章 估计方法的扩展第二节 受限因变量模型2022/7/25第六章 估计方法的扩展第二节 受限因变量模型4.=0的截取回归模型(Tobit模型)2022/7/25第六章 估计方法的扩展第二节 受限因变量模型 针
10、对Tobit模型,可用Heckman二阶段最小二乘法获得参数和的一致估计量。 利用Probit模型的最大似然法获得参数的估计值/; 将通过最大似然法获得参数的估计值/代入以下的断尾回归模型并利用yt0相对应的数据(yt,xt)估计参数和2022/7/25第六章 估计方法的扩展第二节 受限因变量模型自变量变化对因变量的影响:2022/7/25第六章 估计方法的扩展第三节 面板数据 在经济研究工作中,通常会遇到横截面数据和时间序列数据相结合的情形。如:中国统计年鉴中全国各地的人均收入和人均消费等经济变量的年度经济数据。这些全国各地的相关经济变量的集合就构成典型的面板数据(paneldata)。 由于面板数据包含横截面数据的变化过程, 面板数据的分析主要需要考虑各经济主体之间的差异。 2022/7/25第六章 估计方法的扩展第三节 面板数据1.固定效应(fixed effect)模型2022/7/25第六章 估计方法的扩展第三节 面板数据2022/7/25第六章 估计方法的扩展第三节 面板数据2022/7/25第六章 估计方法的扩展第三节 面板数据2022/7/25第六章 估计方法的扩展第三节 面板数据2022/7/25第六章 估计方法的扩展第三节 面板数据2.随机效应(random effect)模型2022/7/25第六章 估计方法的扩展第三节 面板数据2022/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南省许平汝名校2025届高三下学期二模试题 英语 含解析
- 总务科购买物品合同协议
- 2025仓库保管合同范本
- 2025商业店铺联合租赁合同
- 2025企业雇佣合同范本
- 员工劳动解除合同协议
- 品牌海外经销合同协议
- 2025商业物业服务合同
- 2025版对公借款合同范本 - 合同范本大全
- 毁坏农地补偿协议书模板
- 财务支出预算表模板
- 心房颤动健康宣教
- 人力资源的5分钟劳动法
- 充电桩工程施工组织设计施工组织
- DL-T 5850-2021 电气装置安装工程 高压电器施工及验收规范
- 多层螺旋CT原理及临床应用
- 小学语文五年下册《习作:形形色色的人》说课稿(附教学反思、板书)课件
- 部编版二年级语文(下册)期末复习教案+计划2
- 轨道起重吊车安全操作规程
- 三年级培智生活数学暑假作业
- 公路隧道建设施工技术规范学习考试题库(400道)
评论
0/150
提交评论