




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.10(1)Ba4 卩2L 图3.23.3图3.3所示钢架的点B作用一个水平力F,钢架重量忽略不计 求支座A D的约束力。AVVFdS3, 3. 1解:由图3.3可以确定D点受力的方向,这里将 A点的力分解为X、 y方向,如图3.3.1根据力与矩平衡有、F(x): F _FX =0 F(y):FD -Fy=O、 M (A) :FD(2L) - FL =0解上面三个方程得到FF /、Fx 严),Fy (J,Fd ()22F(AM ): F1 cos(30 ) -T cos(15 ) = 0F(AM ): F1 cos(30 ) -T cos(15 ) = 0304560FiCA3.5图3* 5
2、3.5如图3.5铰链四杆机构ABCD勺CD边固定,在铰链 A B处有力F1、F2作用,如图所示。该机构在图示位置平衡,杆重忽略不计。求力F1和力F2的关系。解:(1)对A点分析,如图3.5.1 ,设AB杆的内力为T,则将力投影到垂直于AC方向的AM上有NT303NT303对B点分析,如图3.5.2,将力投影到垂直于BD方向的BN有、 F(BN) :F2 cos(60 )-Tcos(30 ) =0由、可得23Fi 二F2 茫 0.64395055D859379F2pDB=BE = DE=CA。 F=20kN,P=12kN 求 BE杆的受力解:(1)对A点受力分析,将力投影到垂直于 AC方向的AN
3、上有 F(AN): Fab sin60 F =0(2)对B点受力分析,如图3.82 将力投影到垂直于BD方向的BM 上有a F(BM): FabCoSBO -Fbe sin60 -Pcos60 =0由、可得Fbe 二 28 kN T6.1658075373095kN (方向斜向上).33.9如图(见书上)所示3根杆均长2.5m,其上端铰结于K处,下端 A B C分别与地基铰结,且分布在半径 r=1.5m的圆周上,A、B、C 的相对位置如图所示。K处悬挂有重物G=20kN试求各杆中所受力。F;图3.9解:(1)如图3.9,在竖直面内,每个杆的受力图如第一幅图,则根据竖直方向的力平衡有Fa COS
4、 J FbCOS : FcCOS J -G =0.口 r 3 sin 二l 5(2)将力投影到水平面内,如图3.9第二幅图,其中投影的时候有F Fa sin =FbFbSI n=Fc = Fc sin在水平面内根据力平衡有Fb-FaS in 30 =0Fc - Fa cos30 二 0 由、可解得10.5662432702594kNFBkN 5.28312163512968kN3+y/3FC25 kN 9.15063509461097kN13补充解题知识已知空间的两点A(ax,ay,az)、。匕卩),且A点受一个力矢(Fx,Fy, Fz), 求A点关于0点的主矩。那么根据空间关系,可以直接得到
5、结果M X H Fz(ay - Oy) - Fy(az - 0Z)My=Fx(az-Oz)- Fz(ax-Ox)MZ =Fy(ax-Ox) - Fx(ay-Oy)特别地,当0为原点时,有如下的结果M X = F zdy - F ydzM y 二 Fxaz - FzaxM z 二 Fyax - Fxay04. 34.3简支梁AB跨度L=6m,梁上作用两个力偶,其力偶矩M 15kN m, M 2 = 24kN m。试求A、B处支座的约束力。解:如图4.3根据力、矩平衡有F(Y): Fa -Fb = O M (A) :FBL Mj -M2 =0解上面的方程组得FB =1.5kN( ), FA =1.
6、5kNC)4.4 铰接四连杆机构OABQ在图示位置平衡,已知 OA二0.4mOB二0.6m , 一个力偶作用在曲柄OA上,其力偶矩Mi =1Nm,各杆自重不计,求AB杆所受力以及力偶矩M2大小。解:对AO段分析有、M (O): FabIoa si n30 -M0二 Fab =5N()对OiB段进行分析有M (Q): Fabb - M 2 = 0=M 2 = 3N m2a合團4 54.5在图4.5结构中,各构件的自重略去不计。在构件 AB上作用一 力偶矩为M的力偶。求支座A和C的约束力。2aFox解:如图4.5.1(1)分析BC段有v M(B):Fcya-Fcxa = 分析AB段有 M(B):F
7、Ay2a FAx2a-M =0整体受力平衡有、F(x):Fcx-Fax =0 F(X): FCy - FAy = 0求解、可得Fax(Fcx()二 FAy(J 二 Fcy(M4a图474.7如图4.7长方体的长、宽、高分别为 a=80mm,b=40mm,h=30mm,F1 (10N)、F2 (5N)分别作用在A、B上。求F1在图示各个坐标轴的 投影和F2对各坐标轴之矩。解:團 4 7, 1(1)如图471将Fi沿竖直方向分解(即在 ABCD平面分解)得到Fz、Fxy,其中Fxy与Fi的夹角为二。然后再将Fxy在平面分解,根据力平衡有Fxy = F1 cosvtan 寸wa2 +b2Fx 二 F
8、xy cos:Fy = Fxy sin :解上面的方程得80FxN 8.47998304005088N8940FyN 4.23999152002544N(注意,解题方向与图形 方向相反)30FzN 3.17999364001908N89(2)由图4.7可得到F2的空间表示为(04-3),坐标为(a,0,h)Mx = -3 0 - 4h0.12N m 则 M y = 0 h 3a = 0.24N mMz=4a-0 0 = 0.32N m34.114.11图示的曲拐是由3根长度为L、直径为d的圆杆制成,其中,.OBC 是平面内的直角。C处有沿着DC轴线作用的水平力F1, D处有竖直 向下的力F2,
9、D处有平行于平面Oxz的力F3,且F3与x轴正向成30 角。三个力的大小均为F,求力系的主矢和关于O点的主矩。解:Fl、F2、F3的大小在空间可分别表示为(0,-F,0)i、(0,0,-F)2、(-F,0,丄F)3,2 2它们所在空间坐标分别为(L,0, L)、(L,L,L)、(L,L,L)则(1)主矢,3131F =(0 0 F,-F 0 0,0-F F) =F( ,-1,)2 2 2 2(2)主矩Mx二 FL FL 1FL2FLMy=0 FL 三 FL2MzFL -三 FL 二2FL2M =巳(1,1、3,-2 -3)24.12 给定三个力:F3i 4j 5k 作用点为 (0,2,1);
10、F -2i 2j -6k,作用点为(1,-1,4); F3 i - 3j 2k,作 用点为(2,3,1)。求力系的主矢和对坐标轴原点 O的主矩。解:主矢F = R F2 F3 =(3 2 _1,4 2 _3,5 一6 2) = (0,3,1)主矩M x =5*2 - 4*1 6*1 - 4* 2 2*31*3 = 13My =3*1 _5*0_2*4 6*1 _1*1 _2*2 4M z = 4*0 _2*3 2*1 _1*2 _3*2 1*3 = _9M =(13,-4,-9)團 4. 134.13如图4.13,已知OA=OB=OC=e力F1、F2、F3大小均为F。力系的主矢和对坐标轴原点
11、0的主矩。解分解Fi、F2、F3到对应空间矢量以及坐标有A点:力(-F,-F,O),坐标(a,0,0)2 2B点:力(O,-,F,,F),坐标(0, a,0) TOC o 1-5 h z 22C点:力(F,0 F),坐标(0,0, a)22(1)主矢4227242422F =(F 0F,F F 0,0 F F) =(0,0,0)222222(2)主矩 TOC o 1-5 h z 72V2V222Mx=O*O-O* F Fa -0*( F) (F)*0 a*0 Fa2222 2422V24242My=( F)*O_O*a 0*0_0* F Fa_O*( F) Fa2 2 2 2 2V2迈4242
12、42Mz Fa -O*( F) ( F)*O-a*O 0*0 F *O Fa22222M盲知,1)Ny ,图 5.105.10如图,六杆支撑一水平面矩形板,在板角处受铅垂力F的作用,杆、铅直。板和杆自重不计,试求各杆内力。解:如图5.10,因为在x方向只有F6有分量,则必然F6=0如图建立坐标,则外部只有 O M N D处受力,则写出各点受 力矢量以及坐标为(设杆件长度为I )O 点,力(OcosFr F2Sin 旳,坐标(0,0,0)M 点,力(0,03),坐标(0,0.5,0)N 点,力(0,-F4COSfF5 F4Sin,坐标(1,0.5,0)D 点,力(0,0,-F),坐标(1,0,1
13、)其中tan 丄0.5则根据系统主矢以及关于O的主矩为0有 F(x) :0 0 0 0 = 0 F(y): F2 cost - F4 cost - 0F (z) :F1 F2 si nr F3 F4 s inF5 - F = 0 M (x): 0.5* F3 0.5* (F4 sin 二 F5) = 0 M (y): F4sin v F5 - F =0M (z): -F4 cost - 0解上面的方程得Fi 二 F()F2 =0F3 FC)F4 =0FF()F6 -0c尿一十B/ fBxHyFgy图 5.125.12三铰如图所示。F=50kN q=20KN/m a=5m 求支座 A B的约束
14、反力。解:整体分析q 2M (B): FAy2a Fa a -0F(x):Fax F -Fbx =0F (y): FAy FBy -qa =0对AC段分析M (C) : FAxa - FBxa = 0由、可以解得Fax =0FAy =0Fbx = 50kN ()FBy =100kN()5.14如图5.14在杆AB两端用光滑圆柱铰链与两轮中心 A B连接, 并将它们置于互相垂直的两光滑斜面上。已知轮重F2二F1,杆重不计。 求平衡时的二角。解:(1)设光滑面右坐两边的支持力分别为Ni、N2,如图5.14.1。则对整个系统根据力平衡F(x):Ncos45 -N2cos45 = 0F (y) : F
15、1 F N1 sin45 - N2sin45 =0设AB长为L,则系统对A点取矩有M (A): N 1LsinO 45 ) - F2Lcos0由可得、.2 sin(45 旳二 cos v = 0Fnanb4cx35.165.16如图5.16所示,汽车停在长L的水平桥面上,前轮和后轮的压力分别为F1和F2。汽车前后两轮间的距离为a。试问汽车后轮到支座A的距离x多大时,方能使支座A和B的压力相等。解:(1)由系统平衡可得FW):Na比干十?M(A):F2x F,a x) - NBL =0(2)因为题目要求A、B两点压力相等,则Na =Nb由两点解得FiLxa2Fi F2卜4aaS5. 185.18
16、图5.18构架AB CD和DE三根杆组成。杆 AB和CD在中点0用铰链连接,DE杆的E端作用有一铅直力F, B处为光滑接触。不计杆 自重,求铰链0的约束反力。解:设BE段长度为b对DE段分析,如图5.18.1F(y):FB -Fd -F =0M (D):F(b 2a) -Fb2q =0F5. 18. 2对AB段分析,如图5.18.2M (O): FAxa FAy Nb0图 5. 18, 3对DC段分析,如图5.18.3M(O):Fcxa-Fcya Npay 图 5. 18,4对整体分析,如图5.18.4F(x): Fax - Fcx = 0F(y):FAy F 化=0由可解得bF()FAF,F
17、A2aF(5)对AB杆受力分析,如图5.18.2,贝卩有F (x): Fox 一 Fax =0F W) : FOy - NB - FAy = 0(6)求解、得Fo F C ) a ba特别地,当b=a时,Fy =2F().-2-h-3-I-3-h图 5* 195.19如图5.19直杆AC DE和直角杆BH铰接成图示构架。已知水平 力F=1.2kN,杆自重不计。求B点铰的约束反力。解:H(1)如图5.19.1 ,整体分析M(A):F(3 6 3)-NH(2 3 3)=033-h图 5 19, 2如图5.19.2,分析DEM (C): 3F -6Ex =0如图5.19.3,分析BEH段有Fx: B
18、x - Ex = 0Fy: By Nh -Ey =0M(B):3Ey-Nh(3 3) = 0由解得B= 0.6kNzvBy = 1.8kN5.20图示5.20机构由两个重50N的集中质量,四根等长轻杆及刚度系数k=8N/mm的弹簧组成,已知每根杆长 a=200mm弹簧未变形时,=45。不计摩擦,求机构平衡时的二角。解:由于对称性,AD与BD杆的内力相等,AC与BC内力相等,这里设AD杆内力为Ti,BC杆内力为T26464如图5.20.1分析A点受力平衡有F (x): T-! sin v -T2 sin0F(y):TiCOS)T2COS J -G = 0F (y) : Fk -T1 cos j
19、- T1 cost - 0设弹簧最终伸长为I,有Fk =k(l - i2a)丄COSV -a由解得322 +1v - arccos0.76304949504874 : 43.7195156258815图5. 275.27,如图5.27,求图形重心的位置图5. 27. 1解:如图5.27.1 ,将图形分解成3部分。则很容易得到三部分的重心坐标以及对应的体积,即为=4.6,% =1,乙=0.3,y =2*0.6*2 = 2.4x2 =1.8, y2 =1,Z2 =0.7M =3.6* (0.6 0.8)*2 = 10.08X3 = 0.9, y3 = 2.5, z3 =1.4乂 =1.5*1.4/
20、2*1.8 = 1.8933则重心坐标有XVx?V2xV 330.855V1 V2 V3_ 14.37y1V1y2V2y3V3仃.205V, V2 V314.37Z1V1Z2V2Z3V38.658MV2V3KJ14.37XcycZc:2.147181628392481.19728601252610.602505219206681r的半球应该取多5.29、如上图5.29.几何体圆柱的直径为2r和一个半径为 组合而成。要让形心位于圆柱与半球交界面,圆柱的高a少?解:2_二 n r a38,体积a 如图建立坐标系,明显上面圆柱形心zi =-,体积ViJ 22一0 n(r -z )zdz设半球z方向形
21、心坐标为 勺则Z2 =0 n(r -z )dz?n 3 TOC o 1-5 h z v2r3+丘(3)由题有 ziViZzV2 = 0= rFlF2图 5, 345.34、如图5.34 ,已知Fi =10kN,FF20kN。求杆的内力。解:图 5 34+ 1如图5.314.1 ,对系统整体分析:F(x): Ax -F3 cos60 =0M (B): Ay4aR3aF2 2aF3 sin cos60 a = 0Ax =10kN2对C点受力分析有F(y) :T3 F2 =0二 T3 =-20kN如I截断,对于左边部分有M (D): Ay2a Axa - F1a T4a 二 0二 T4 =35-5、
22、3 -43.6602540378444kN如H截断,分析左边部分有M (E): Ta - Aya = 0= h=21.8301270189222kN如图皿截断,分析左边部分有M(C)“a fa T2 討 016.7303260747562kN2a2a2a2a3. 553.35如图3.55.求杆的内力。解:(1)对C点分析:F (x): T2 cos T3COS J - 0atan2a=T2 丁3对整体分析F(y):NA Nb -5F =0M (A): F(8a 6a 4a 2a) -NB8a =0二 Na 二 Nb 冷 F如I将图形截开,对右部分分析F(y): F F - NB T2sin T
23、3sin八 0 有解得T25F,Tb5f44由I截开,对右部分分析有F(x): T1 T4 T2 cost T3 cost - 0结合可得 =:T4对I截开,分右边部分有M(D): NB2a - F2a -T;2a +T2 2a= 0 v 5a结合解得T2 =2F,=2F6.1分别作出6.1.a、6.1.b的轴力图以及指出轴力最大值如下6.1.a图轴力最大值为2kN3k2 kNlm, lm2kX-lkN6. 1, a如下图6.1.b轴力最大值为3kN2kL 5 m_|lm卜6. Lb6.2画出如下结构的轴力图并且指出轴力最大值6.7建立图示结构的剪力、弯矩方程,并且指出绝对值最大的剪力与 弯矩
24、。如图 6.7.C6. 7, c解:以图示坐标轴建立方程由图可以得到q关于x的函数q(x)二,用一个等效的力F等效q作用的力,则 TOC o 1-5 h z L|2Fq(x)dx=.qxdx号,且远离原点的距离为 HYPERLINK l bookmark22 o Current Document 00 L23对A点取矩有M(A): NL -F L =0= N =吐36则可得剪力方程为xF(x)=N - q(x)dx =0因为F(x)严0,所以剪力函数是一个单调函数。则其两端的值为 最大最小值。当x=L时,F(x)牛,所以绝对值最大剪力为号对中间截面x处取弯矩有x3M(x) = Nx-f q(x)dxx 一薯3 06 6L因为M(x)6I-x = L,所以 M(x)揺 qL2即为最大(d)F(x) = Nb cx-a0 -q cx-an如上图以0为原点建立坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美工技术面试题目及答案
- 建设银行2025扬州市秋招笔试创新题型专练及答案
- 建设银行2025陇南市信息科技岗笔试题及答案
- 2025年3D打印技术的生物材料打印
- 邮储银行2025亳州市秋招无领导模拟题角色攻略
- 2025行业技术革新趋势报告
- 2025网络安全投资分析
- 工商银行2025中山市秋招笔试性格测试题专练及答案
- 交通银行2025吉安市金融科技岗笔试题及答案
- 工商银行2025丽江市笔试英文行测高频题含答案
- 技术核定单样表
- 车辆赠与协议模板
- 烧结岗位安全操作培训-PPT课件
- 【课件】1.2 点线传情——造型元素之点线面 课件-2021-2022学年高中美术人美版(2019)选修绘画
- Q∕GDW 11445-2015 国家电网公司管理信息系统安全基线要求
- 运动处方(课堂PPT)
- 物资储备与物流方案
- 财务报销流程培训PPT模板课件
- 关于加强铁路企业年金管理的指导意见
- 幼儿园体检结果分析评价表
- 资金筹集业务核算培训教材(共39页).ppt
评论
0/150
提交评论